
36 TUGboat, Volume 10 (1989), No. 1

References to ship the character off to the Generic Format file

[I] Ronald L. Graham, Donald E. Knuth, and
(GF file). So, the endchar definition seemed like

Oren Patashnik, Concrete Mathematics. Addison-
a good spot to tell METAFONT to take whatever

Wesley, 1989.
character image had been created and convert it

to an outline, since it is called once per character,
[2] Donald E. Knuth, "Mathematical typography," right before it's shipped out,
Bulletin of the American Mathematical Society Here is the macro definition I used to create
(new series) 1 (1979), 337-372. outline fonts with:

[3] Donald E. Knuth, Seminumerical Algorithms,

second edition. Addison-Wesley, 1981.

[4] Donald E. Knuth, The w b o o k , Volume A of

Computers & Typesetting. Addison-Wesley, 1984

and 1986.

[5] Donald E. Knuth, The M E T R F O N T ~ O O ~ , Vol-
ume C of Computers & Typesetting. Addison-

Wesley, 1986.

[6] Donald E. Knuth, Computer Modern Type-
faces, Volume E of Computers & Typesetting.

Addison-Wesley, 1986.

[7] Donald E. Knuth and Hermann Zapf, "AMS

Euler - A new typeface for mathematics," Schol-

arly Publishing, to appear.

[8] David R Siegel, The Euler Project at Stan-

ford. Computer Science Department, Stanford Uni-

versity, 1985.

Outline fonts with METAFONT

Doug Henderson

Lately I've been feeling like no one else out there

is having any fun with METAFONT. I sure am.

Recently, I came across a small gem in the rough

in the METAFONTbook and decided to polish it up

some. In chapter thirteen there is an interesting

exercise (13.23, page 121) which calls for the user to

replace a character by its "outline". Since it was an

idea that appealed to me (double dangerous bend

kind of fun) I set about applying the solution in

various places in the METAFONT source code to see

the affects. What I finally settled on was hooking it

in as a definition extension of the endchar macro. I

reasoned that for each Computer Modern character

METAFONT produces in a font, there exists both a

beginchar statement, with which you relate things

like the height, width and depth, and an endchar

statement, which tells the program, among other

things, to create a grid box for proof characters and

m e ~ s a g e ~ ~ l o a d i n g t he fon t ou t l i ne macros.";

boolean out l in ing ;

% only ou t l i ne when t o l d t o

ou t l i n ing := fa l s e ;

def ou t l i ne =

i f ou t l in ing :

c u l l cur ren tp ic ture keeping (1 , i n f i n i t y) ;

p i c tu r e v; v :=cur ren tp ic ture ;

c u l l cur ren tp ic ture keeping (1 , l)

withweight 3;

addto cur ren tp ic ture a l so v - v

s h i f t e d r i g h t -V s h i f t e d l e f t - v

s h i f t e d up - v sh i f t ed down;

c u l l cur ren tp ic ture keeping (1 ,4) ;

i f (pixels-per-inch >= 600) :

addto cur ren tp ic ture a l so cur ren tp ic ture

s h i f t e d l e f t ;

addto cur ren tp ic ture a l so cur ren tp ic ture

s h i f t e d up;

f i

showit;

f i

enddef ;

extra-endchar:=extra-endchar & "out l ine" ;

The first statement declares a boolean vari-

able named out l in ing . The next line initializes

ou t l i n ing to be f a l s e , so we don't create outline

fonts by default. The definition of ou t l i ne includes

the line i f ou t l in ing : which tests to see whether

the outlining feature is desired. If so, the macro

proceeds to punch out the pixels on the inside

of our character (leaving more than one pixel for

the outline if using a high resolution printer or

phototypesetter) and show the results, and, if not,

ends the i f statement with the f i statement. The

last statement is interesting since it shows a nifty

way to tack on new features when creating your

characters. Instead of redefining the definition of

the endchar macro with your special effects (in this

case a character outline), just add to the defini-

tion of endchar with the extra-endchar statement.

Some similar "hooks" exist for the beginchar and

TUGboat, Volume 10 (1989), No. 1 37

mode-setup macros; they are extra-beginchar and

extrasetup.

This macro was intended to be used (by me

anyway) as an extension of the plain and cm
(Computer Modern) base files. This way I did not

need to input it each time I wanted to make an

outline font. Since I place all of my local extensions

to either base file into a file named local .mf, that

is where my outline macro went.

To load it into the plain base file using the

initialization version of METAFONT, INIMF, use the

following line:

inimf plain input local dump

Similarly, for the Computer Modern base file use:

inimf plain input cmbase input local dump

Now that it is a part of your base files, you simply

need to set the boolean switch outlining to true

to make an outline font. Here is one way to make a

17 point sans serif font:

m f %cm \mode=varityper;

outlining:=true; input cmssl7

After making my first few outline fonts I was

feeling quite pleased with them so I happily sent

them off to Professor Knuth thinking I had some

interesting results to share. Here is a small sample

of how the characters had turned out.

Some were ffuaroony looking!
Notice the last two characters in the line

above have fairly thin strokes, so the result-

ing outline characters appear mostly filled in.

Professor Knuth suggested that the values for

rule-thickness be increased to match the other

characters, so I experimented a bit and came up

with rule-thickness=lpt for the font sample I
sent, cmssl7 (a 17pt sans serif font). Another pa-

rameter which he suggested I change was notch-cut.

Looking at the W reveals why. The notch-cut pa-

rameter helps "black" fonts look correct at the

meeting place between diagonal strokes by remov-

ing pixels there. While I was at it, I also found that

the capnotch-cut parameter, when set to a very

high value, made the outline fonts look less dark.

Knuth's suggestion of setting the notch-cut value

to 17pt# (relative infinity) helped out considerably.

Here is our reworked W.

Some were better looking! # =
Another issue to be addressed is that of font

naming conventions. The method supplied above

has the side-effect of creating METRFONT runs with

the names "cmss17.600" for a GF file, "cmssl7.tfm

for a TFM file, and "cmssl7.log" for the log file

METAFONT creates. Since what we are doing is

modifying Computer Modern fonts, we should also

change the name of our outlined fonts. Besides,

if you installed them in your font directories, you

would overwrite the real cmssl7 CM fonts!

I believe the best way around this name colli-

sion is to create unique fonts by copying the original

name, say cmssl7.mf1 and copying it to another

test file you can then work with. I put forth the

suggestion that outline fonts have the letter "on

prepended such that an outline font created with

cmssl7 would thus become ocmss17. This way the

names and values of fonts which Knuth has per-

fected will remain untouched and we can happily

play with the font "ocmssl7.mf" without fear of

reprimand. Below is a sample of some of the type

of information I would change at the beginning of

the file ocmssl7.mf.

% This is OCMSS17.MF in text format,
% as of September 10, 1988.
% Computer Modern Sans Serif Outline 17.28 pt
if unknown cmbase: input cmbase fi

font-identifier:="0CMSSU; font-size 17.28pt#;

% rule_thickness#:=.6pt#; % old value
rule-thickness#:=lpt#; % new value

% thickness of lines in math symbols

% notch_cut#:=32/36pt#; % old value
notch-cut#:=17pt#; % new value

% maximum breadth above or below notches
% cap-notch_cut#:=46/36pt#; % old value
cap-notch_cut#:=17pt#; % new value

% max breadth above/below uppercase notches

% and of course the remaining fifty-eight
% parameters in a parameter file

The title is changed to reflect our new name

and date of creation. The line outlining: =true;

is used here to show an alternative to placing it

on the command line, and the fontidentifier is also

changed to have the outline present (OCMSS). The

other changes to the file are changing the values for

notch-cut, capnotch-cut, and rule-thickness,

as they are.

This small amount of tuning I have found to

be adequate for most of the outline fonts I have

created. Here are some samples to show how well

(or not) particular types of Computer Modern fonts

look in outline form.

38 TUGboat, Volume 10 (1989), No. 1

Computer Modern Roman Outline

5 p t the lazy brown fox jumped

THE LAZY BROWN FOX JUMPED

]Opt the lazy brown fox jumped

THE LAZY BIROWN FOX JUMPED

Computer Modern Sans Serif Outline

8pt the lamy brown fox jumped

THE LAZY BROWN FOX JUMPED

12pt the lazy brown fox jumped
THE LAZY BROWN FOX JUMPED

Computer Modern Typewriter Outline
> Opt the lazy brown fox jumped,

ThE LAZY BREW FOX JUMPED

We can see from these samples that fonts which

have a large degree of variance in the stem, h a i r ,

curve, and v a i r parameters, such as Computer

Modern Roman fonts, do not make particularly

good-looking outline fonts; often the horizontal bars

come out looking black (or nearly so). This is

also true for most variations of the Roman family,

including CM bold (CMBX), slant (CMSL), and

italic (CMTI).

Here is a sample of OCMBX12, OCMSL12, and

OCMIT12:

B2pt the lazy brown fox jumped
THE LAZY BROWN FOX JUMPED

The sans serif fonts, on the other hand, with

nearly uniform thickness in h a i r , stem, and curve

are better subjects for outlines than the serifed fonts

and, I thought, came out rather nicely. Personally

I thought that the CMSSDC (Computer Modern

Sans Serif Demi-Bold Condensed) font came out

looking the best of those that I tested. It looks like

this:

I hope others will do some experimenting with

outline fonts and share their results with the rest of

US.

A few general observations that may be obvious

but need to be said anyway are that the larger the

font size, the better the "outline" due to the overall

thickness of the digital pen strokes. This means that

the five through ten point sizes are not really ideal

for outline fonts for a 300dpi laser printer. I will

be working on changing some parameters to make

better low-resolution fonts and report on the results

in a future issue. For now, though. we can see for

ourselves how they look with the resolution of the

APS phototypesetter (722.909 pixels per inch) since

this article was typeset with them.

