
TUGboat, Volume 11 (1990), No. 1

How to Avoid Writing Long Records to
T'X's \write Streams

Peter Breitenlohner

In his article 'Macros for Indexing and Table-of-

Contents Preparation' in TUGboat 10, no. 3 (1989).

pp. 394-400. David Salomon mentions a problem

with very long records written to one of m ' s
\write streams (p. 399): ". . . Since each line of the

table of contents goes on the file as a record, its size

is limited and. as a result we cannot have chapter

or section names which are too long. . . ."

There seems to be a similar problem in LPm,
since LP'l&X users frequently request that TEX
implementations be able to write very long records

(for CMS up to 1024 characters).

There is, in fact, a very simple method to avoid

this problem: split the output into several records

at all those points where a new line starts in the

user's input. The macro \chap defined below (to be
used with plain.tex) demonstrates how this can

be done. The argument of \chap is typeset in bold

face (with line end characters converted to spaces)

and written (\immediately) to a file.

\immediate\openout\ind=\j obname . ind
\chap{This is

one (immediate)

potentially

very long text3

\ irnmediate\closeout\ind \vfill\break

The definition of a similar macro \Chap:

\openout\inx=\jobname.inx

\Chap(This is

another (delayed)

potentially

very long text)

\closeout\inx \vfill\break

demonstrates that things are only slightly more

complicated for a delayed \write.

o Peter Breitenlohner
Max-Planck-Institut fiir Physik

Miinchen
Bitnet: PEB@DMOMPIll

Tutorials

Forward References
and the Ultimate Dirty Trick

Lincoln K. Durst

In this tutorial, we pick up where we left off in the

first episode: See TUGboat 10, no. 3 (November

1989), pages 390 - 394.
The last page, 401, of Appendix D ("Dirty

tricks") of The m b o o k describes what surely

deserves to be called the ultimate dirty trick.

Under the heading "Syntax checkzng" the creator -

of TEX, of course! - tells us how to disable the

output routine, abolish all fonts, ignore all line

and page breaks. and otherwise have race
through a file doing nothing more than executing
the macros it encounters and can recognize. The

original intention for providing this feature. as the

name makes clear, was to locate typographical or

other errors in the names of macros: Any macro

TUGboat, Volume 11 (1990), No. 1

not recognized will be listed in the transcript of the

rn run. It is a tool that may certainly be used

effectively for that purpose. But it has other uses

as well.

"Syntax checking" will write what we tell it
to write into files that can be read in when the

text file is really w e d . The scheme here is to

handle forward references during a "preprocessing"

run and postpone typesetting until everything is

ready for it to proceed. One may expect that a
preprocessing run should take less time than a full

lQX run. Just how much difference there may be

depends on a number of things; we shall come back

to this question later.

Note that preparing indexes, tables of contents

or lists of illustrations, figures. or tables does not re-
quire two runs, any more than making bibliographic

citations does, provided that one is sufficiently in-

different about which sheets may come out of the

printer first. Two complete runs are, of course,

required if one wants to make forward cross refer-
ences involving page numbers, such as those found

in the telephone companies' Yellow Pages ("See

our display adv. on page 9,90lX), if some of the

advertisements do not precede all the listings that

refer to them. References to chapters, sections,

theorems, figures, tables, or equations ordinarily do
not require page numbers: Page numbers in cross

references always have been an expensive luxury

and, although they might be getting less expensive,
they are still a luxury.

We require a file, call it syntax. chk. which will
do what is described on page 401 of The m b o o k .

Two realizations of syntax. chk have been made by

Michael Spivak. One is a subset of amstex . t ex ;
the other is in the file v a n i l l a . s t y distributed by

Personal 'I'EX. Inc., as a part of PC TJ$. Readers
who have access to either of these files should look

for \font\dummy and copy out everything from its

first occurrence through the definition of \syntax.
Don't forget to put

\catcode'\@=ll

at the top of the file. At the bottom of the file put
the following three lines:

\syntax

\catcode'\@=12

\endinput

Next we prepare what we shall refer to as a

"driver file" like the following one for FIGURE 1

(which also accompanied the first installment of this
tutorial):

0 0 . fermat.tex, a drlver %I%
,,. LdL for fermat.src, q.v. %%%

\mput prepare. tex

\ShowMacros

\RefsInOrderClted

\preprocess{fermat.src) \bye

\compose{f ermat. src) \bye

Here prepare . t e x is a file, to be described in detail,

containing code that controls what goes on in what
follows. \ShowMacros and \Ref sInOrderCited are

options (the latter was discussed in the tutorial

cited above). \ShowMacros sets a switch that

causes the marginal notes to appear; default is no
marginal notes. so it suffices to "comment" this line

out (insert % to its left) when final copy is run. The

line after the options starts the preprocessing run

and terminates the run when that has been

completed. For the composition run, comment out

the \preprocess-line with % at its left and rn
the same file again. The file f ermat. s r c is the
file containing the text of the piece to be typeset.

The macros \preprocess #I and \compose #I are

defined in the file prepare. t ex :

%%% prepare.tex, flrst excerpt %%%
\newcount\sectnum \sectnum=O

\newcount\dlspnum \dlspnum=O

\newwrlte\macrodefs

\newlf\xfShowlngMacros

\ShowlngMacrosfalse

\def\ShowMacros{\Show~ngMacrostrue)

\newlf \lf OrdClted \OrdCltedf alse

\def\RefsInOrderCltedI\0rdCltedtrue)

\newlf\lfMaklngPages

\MaklngPagesf alse

\def\preprocess #I{%

\immedlate\wrltel6{%

.preprocessing.. . . .I%
\~nput syntax.chk

\PrepareDefs

\~mmedlate\openout

\macrodefs=\jobname.ref

\~nput #1

\closeout\macrodefs)

\def\compose #I{%

\1mmedlate\wrltel6{%

. maklng pages.....)%
\MaklngPagestrue

\~fOrdClted

\~nput cltatlon.prp

\else

\ ~ n p u t blbllo.prp

\fl

\~nput compose.tex

\lnput\jobname.ref

\mput #1}

64 TUGboat, Volume 11 (1990). No. 1

We interrupt the listing to describe what's here

so far. Parts of this file will be recognized as

dealing with bibliographic citations as discussed in

the previous tutorial.
First, we attend to some preliminaries: Alloca-

tions for counters (to number sections and displays),

for a file to hold the macro definitions, and for sev-
eral \ i f -switches.

Next \preprocess#l is defined. First it inputs

syntax. chk in order to cripple plain w: what

\PrepareDefs is and does will be discussed later:
a file is opened next that is to contain the macro

definitions (in the case of FIGURE 1, the name of

the file opened is f ermat . r e f). Finally it m X s

f ermat. s r c and closes f ermat. r e f . What is put

into the new file. as we shall see, are definitions for

the macros whose names are printed in the margin
of FIGURE 1.

The third thing here is the definition of

\compose #I. which begins by resetting the switch

for making pages. Next the preliminary work re-

quired for handling bibliographic citations is done.
as described in the previous tutorial, and finally

three files are input. These are: compose. t e x which

contains typesetting information required for setting
titles, subtitles, running heads and feet. marginal

notes. etc., information not required for the pre-

liminary run; the file \jobname. r e f , created in the

preprocessing run, which contains the definitions
used to make the cross references; and finally the

file containing the text source is read in again and

the typesetting is carried out.
Now for more of prepare. tex:

, , e /,/,I, p r e p a r e . t e x , second piece %%%

% The next p a i r of d e f i n i t i o n s

% w i l l be w r i t t e n over when

1. Fermat numbers \sect .Fermat .

Fermat considered numbers of the form 22n + 1. which are now known as the

Fermat numbers. F,. and he may or may not have asserted [3, pp. 23ff] that he

had proved they are primes for all natural numbers n. Subsequently Euler found

that the sixth Fermat number.

is a multiple of the prime 641. (Early results of this kind will be found in Dickson's

history [2, volume i] and more recent results in a book by Brillhart, et al , published
last year [I] .)

Euler's result for F5 follows from the elementary facts given in displays 1.1 and
1.2:

641 = 5 . z7 + 1 = 24 + j4 (1.1) \disp.Powers.

hence

5 . 27 = -1. 5422s e 1% 54 3 -24, 2422s g -1 (mod 641). (1.2) \disp. congruences.

I learned this arithmetic trick from Olaf Neumann of Friedrich Schiller Cniversitat.

Jena. D.D.R.; he did not tell me who invented it. LKD

2. References \sect.~efs.

1 Brillhart, John: Lehmer. D. H.: Selfridge. J . L.; Tuckerman, Bryant: Wagstaff. \ref .brlllhart~~~.

S. S.. Jr. Factorzzatzons of bn i 1, b = 2, 3, 5 . 6, 7. 10, 11. 12 up to hzgh powers,

American Mathematical Society, Providericcl (Contemporary mathematics 22,

second edition), 1988.

2 Dickson, Leonard Eugene. Hzstory of the theory of r ~ u m b e r ~ , three volumes. Car- \ref . d l c k s o n ~ ~ ~ .

negie Institution of Washington. Washington. D. C. (Publication number 256),

1918, 1920, 1923. (Reprinted by Hafner and Cliels~a.)

3 Edwards, Harold M. Fermat's last theorem. Springer-Verlag. New York. Heidel- \ref . e d w a r d s ~ ~ ~ .

berg, Berlin (Graduate texts in mathematics 50), 1977.

TUGboat. Volume 11 (1990). No. 1 65

% compose.tex is read in
% during the composition run:

\def \section[#1//#2] C\Section{#2}}

% #1 is the name of the section
#2 is a "tag" in the macro name

\def \eqnum #l{\Eqnum{#l))% #1: "tag"

% The next three definitions

% are used in both runs
\def\Section #l{\advance\sectnun by 1

\dispnum=O % reset in each section
\edef\ItemNum{\the\sectnud

\writedef [Sect//#l//\ItemNd)

\def\Eqnum #l{\advance\dispnum by 1

\edef\Itemnum{\ItemNum .\the\dispnum)

\writedef [Disp//#l//\Itemum])

\def \writedef [#1//#2//#3] {%
\if Makingpages

\MakeNote{#l){#2)%

\else

\def\macdef{\expandafter

\def\csname #l#2\endcsname{#3))%

\immediate\write\macrodefs{\macdef)%

\f il

\def\sect.#l.{\csname Sect#l\endcsname)

\def\disp.#l.{\csname Disp#l\endcsname)

\def\ref.#l.{\csname\endcsname)

First we have the definition of \ sec t ion . whose

first argument is the title of the section, the second

argument being the ,'tag'' to appear in the name

of the macro; for example. "Refs" in the name

\ s ec t .Refs . . The macros \ sec t ion and \eqnum

have two versions (the second versions are in the file

compose . t ex) , one used in the preprocessing run,

the other in the composition run. In the first run.

all that is done is to write the macro definitions

into the file \ j obname . r e f . For \ s ec t ion the first

argument, which is the title for the section. is

discarded on the first pass, since it is not needed

for the macro definition. In the composition run,

compose . t e x is read in after prepare . tex , so for

macros having definitions in both of these files,

those in compose.tex simply write over the earlier

versions given above. The macro \writedef on

the first run puts the macro definitions into the file

\jobname . r e f , and on the second run creates the

notes which may or may not appear in the margin.

The last three definitions listed above in

prepare. t e x deserve some attention. The first

two define the macros used for cross references to

sections and displays using \csname. in such a way

that if one of these macros is encountered as a

forward reference; it will not cause to stop to

report an undefined control sequence. (Recall that

\csname . . . \endcsname has the value \ r e l ax until

it has been defined- cf. the previous tutorial.)

For the same reason, the third one causes to

discard references to bibliographic items, which are
of no interest during preprocessing. All the work

involved with bibliographies takes place during the

composition run.

The macro \MakeNote. which appears in

prepare. tex. is not needed until the second pass:

it is defined in compose. tex, excerpts of which are

considered next.

First we have headings and displays: this part

of compose. t e x writes over definitions contained in

the file prepare . t ex:

%%% compose.tex, first part %%%
0 4 I /,/,/, headings and displays %%%

% This file is loaded by \compose

% after prepare .tex is loaded
% headings
\def\hdingfont{\bf) % plain default (\tenbf)
\newskip\preheadingskip

\preheadingskip=5pt plus Ipt

\newskip\postheadingskip

\postheadingskip=5pt minus Ipt

\def \section[#l//#2] {\Section{#2)%

\nobreak

\vskip\preheadingskip\centerline

{\hdingfont\ItemNum.\

\vadjNote\margtext #I)%

\vskip\postheadingskip)

% displays

\def\eqnum #l{\Eqnum{#l)\eqno

(\Itemurn) \eolNote)

Here we have the new definition of \sect ion; first

it retraces the steps made in the earlier run and

again calls \writedef which, instead of writing to

the file. this time calls the macro \MakeNote to

construct the text for the marginal note. After that

it sets the text for the heading. The treatrnent

of \eqnum is similar: The source file contains.

in display 1.1. \eqnum(Powers). There are at

this point three remaining mysteries: \MakeNot e.

\vadjNote\margtext and \eolNote; these are the

control sequences that put the notes (if any) in the

margin.

Next. marginal notes:

%%% compose.tex, second part %%%

%%% marglnal notes %%%
\font\margfont=cmtt8 \newbox\mbox

\newbox\margbox \newbox\Margbox

\def\MakeNote #1#2{%

\ifShowingMacros

\gdef\margtext{\charl\\%

\lowercase{#l)#2)

\global\setbox\mbox=\hbox~%

\hsklp Ipc\vbox to Opt{\vss

\nolndent\margfont\margtext}}

\f 1)

TUGboat, Volume 11 (1990), No. 1

\def\eolNote{%

\~fShowlngMacros

\hfll\rlap~\box\mbox)

\else

\null

\f 1)

\newbox\parenbox \setbox\parenbox=\hbox{)>

\def\parenStrutI\vrule height l\ht\parenbox

wldth Opt depth l\dp\parenbox)

\def \vadjNote #I{%

\~fShowlngMacros

\parenStrut\setbox\margbox

=\hbox~\hsklp\hslze\hsklp Ipc

\parenStrut\margfont #I)%

\setbox\Margbox=\hbox{%

\raise l\dp\parenbox\box\margbox)%

\wd\Margbox=Opt \ht\Margbox=Opt

\dp\Margbox=Opt \vad~ust{\box\Margbox)%

\else

\null

\f 1)

First a font is chosen and some boxes are allocated
to hold material to be printed in the margin. There

will be two kinds of boxes in the margin, depending

on whether they are called for at the end of a line

of printed text or somewhere other than the end.

Notice that in \eqnum the marginal box is called at

the display number (\eqno), which is at the right
end of the line. This is the case in which the

control sequence \eolNote is used. It is possible

for a section heading to occupy more than one

line and it is probable that a bibliographic item

will do so. If we want the marginal box in such

cases to be even with the number that appears in

the first line, we must either know where the first

line breaks or have a way to insert the call where
the number occurs and arrange for the box to be

printed whenever the line does break. In the latter

case, we resort to the more complicated control

sequence \vad jNote. In any event, the definition

of \MakeNote provides for both cases: the simpler

\mbox is used in constructing \eolNote, and the

text itself, \margtext, is retained for use in the
other case.

The big trick used for notes not inserted at

the end of the line is to invoke \vadjust , which

is described and illustrated on page 105 of The
W b o o k ; \vad jus t is designed to do just what we

need, to wait until the end of the line in which it

occurs and when the line ends its argument is put

into the vertical list. There is a minor complication

caused by the fact that the point in the vertical

list at which the insertion is made is located at

the depth of the box containing the line with the

call to \vad jus t . That depth is zero if there are

no descenders in the text line. but it may not be

zero; also there may be descenders in the name of

the macro to be printed in the margin and maybe

not. In order to make the two baselines even. we
resort to a strut, putting an invisible parenthesis

in both lines (the text line and the marginal note)

and raise the note by an amount equal to the depth

of the parenthesis. [By the way, you could use

\vadjNote\margtext with \eqnum (put it before

\eqno in the definition), but if you do. the note will

appear near the bottom of the display, which may

be a good distance below \eqno if large fractions.

matrices. etc., are involved.] What's more. we hide

the note in \vadjNote by first putting it into one
box (\margbox) and then putting that in turn inside

another box (\ ~ a r g b o x) along with the upward shift

by the depth of the parenthesis. In addition. we

make the whole thing invisible to by lying
about its dimensions, thereby preventing the lines
on either side of it from being spread further apart

than normal.
The next excerpt from compose. t e x is pretty

dull, by comparison; it contains specifications for
the text font and for references:

%%% compose.tex, thlrd part %%%
% Text font
\def\TextFont{) % plaln default (\tenrm)

\TextFont

% References
\newdimen\thehang \thehang=1.5em

\def\bibfont() % plain default (\tenrm)
\def\bibstrut(\vrule height Opt width Opt

depth .4\baselineskip)

\def \bibl#l#2\endbibl{\everyparC)\noindent

\hangindent=\thehang{%

\bibfont\unskip\vadjNote\margtext

\hbox to\thehang(%

\hfll#l\)#2\bibstrut\par))

\def\Bibl#1//#2//#3\endBibl

{\frenchspacing #1 (\it #2\/), #3)

\Bib1 . . . \endBibl is used in b ib l i og . f i l : for

example:

\def\brillhartFOB{\Bibl . . . \endBibl)

We leave the task of filling in the dots as an exercise

for the reader.

In later tutorials in this series. other material

will be added to prepare. t e x and compose. t ex :

for example, code dealing with exercises and their

solutions, discursive endnotes, and other things. In

any case, one line is essential: both these files should

end with \endinput.
Some loose ends: b ib l i o . s e t (v. 0 . 9) and

\PrepareDefs. Here is the third version of

TUGboat. Volume 11 (1990). No. 1 6 7

b ib l io . se t , which includes provision for printing

the names of the macros in the margin:
I , , ALL biblio.set (v . 0.9) %%%

\bib=O

\def\bibmac#l{\advance\bib by 1

\ifShowingMacros

\xdef\margtext{\char'\\#l)%

\else

\let\margtext=\null

\f i

\bibl{\bf\the\bib)%

{\csname #l\endcsname)\endbibl)

\input bibliog.fi1

\if OrdCited

\immediate\write\bibliolist

{\string\endinput)

\immediate\closeout\bibliolist

\input citation. ord

\else

\input bibliog.ord

\fi

\endinput

There is another version (1 .0) of b i b l i o . s e t on the

disk mentioned below; it contains code for trapping
spelling errors in macro names for bibliographic

items, mentioned in the first tutorial.

Finally, how much faster is preprocessing and

what about the macro \PrepareDefs. which ap-

pears in the file prepare. t ex?

Every sufficiently interesting project will,

by definition. use some specially constructed macro

definitions devised just for it. Some users may wish

to keep these in one place for ease of reference:

suppose we call that file \jobname. def. For
example. if you are working with collections of n-

dimensional vectors. you will surely have a number

of definitions of the following sort:

\def\vect#l{(#l-l,\ldots,#l-n))

in your collection of special definitions. You may
have only a handful of such definitions, or you may

have hundreds of them. and even if you don't have

many. those few may occur hundreds of times in

your source text. Here is an example of a judgment

call: Should these definitions go into prepare. t e x

or into compose. tex. or should different versions go

into the two files? If there are enough occurrences
of such macros in the source text, it might save

time during preprocessing if they were all set to

be \ r e l ax at that stage, with the real definitions

postponed until the compositon run, which is where

they are actually needed. But if there are not many

of them and they don't occur very often, you might

as well input \ j obname . def during the preparation
stage just prior to \ input #I.

For whatever reason, if you're impatient (for
example) or if a test shows that it will noticeably

shorten preprocessing. here is a way to disable

the special definitions during that stage. Include

another option. \RelaxDef s . in the driver file to

control a new \if-switch in prepare. tex:

Before we go into how this switch is to be used.

let us recognize that \ jobname .def may not even

exist. that the text requires nothzng not already
provided in p la in . t ex . (Maybe all we're doing is

setting Shakespeare's sonnets, or somebody else's.)

So here comes another option. \Def F i leExis t s.

which controls the following switch:

Then put the following code in prepare. tex:

\def\gobble #I{) % TeXbook, p 308, ex 7.10

\def\dropslash{\expandafter\gobble\string}

\gdef\Relax#l#2{\expandafter

\let\csname\dropslash#l\endcsname

=\relax)

\def\PrepareDefs{%

\def\switchdef{%

\let\Def =\def \let\Font=\f ont

\let\Long=\long \let\long=\relax

\let\def=\Relax \let\font=\Relax

\catcode1\#=12 \catcode'\-=I2)

\def\resetdef{\let\def=\Def

\let\font=\Font \let\long=\Long

\cat code' \#=6)

\if def f ile

\ifRelDefs

\switchdef

\input\jobname.def

\resetdef

\else

\input\jobname.def

\f i

\f i)

Readers of the first tutorial in this series will
recognize the manceuvre here as a variation on the

program bibmac . t ex described in the construction

of b ib l iog . ord from bib l iog . f il. We fool

by telling it that # is an 'other' (see The m b o o k ,

page 37) so will not worry when it is found

in horizontal mode; similarly for - , the reason for

the latter will appear in a later tutorial (when we

consider index construction).

You should also include the following line in

compose. tex:

so that the definitions will be present when needed.

TUGboat, Volume 11 (1990). No. 1

Here is \jobname. def for FIGURE I :
., *
Ad/ , f ermat . def %%%

% Cf. TeXbook, page 106 "\slgnedU
\font\smc=cmcsclO

\def\lnltlals #I.{{\unsklp\nobreak

\hfll\penalty50\hsklp2em\hboxC)%

\nobreak\hfll\smc #l\parflllsklp=Opt

\f~nalhyphendemerlts=O\par})

\endlnput

This was used to put the initials L L ~ ~ ~ " at the

end of Section 1 and the caps-small-caps in the

caption L ' F ~ ~ ~ ~ ~ 1". This is clearly a case in which
exercising the option to disable these definitions

is not worthwhile. As a matter of fact. \smc

is actually seen by in the file fermat . s r c
only when \~fMaklngPages is true; and. although

\ m l t l a l s is seen in both runs. it's used only

once. So why bother? \RelaxDef s is intended to

disable the definitions when (a) that actually makes
a difference and (b) the job is too big to be worth

doing by hand.

According to Knuth (last sentence on page

401. The w b o o k) , syntax checking. together with

writing to files disabled. -usually make run

four times as fast." Here we certainly do not want

to disable writing to files. and even though we

go out of our way to avoid showing TEX things

it has no need to see during preprocessing (such

as srction titles, bibliographic citations. and - in
the next tutorial-texts of exercises. solutions. or

endnotes), we find that we can achieve speeds in

the range one-to-two times as fast.
Last Question: How can you tell whether re-

laxing some of the definitions is worth the bother?

You can time the preprocessing run and see if it

makes any difference. A pair of simple programs

that may be used to do this will be found on the

disk referred to in the Note below: they are written
in ANSI/ISO Standard C. The disk contains for both

programs the source code and executable versions

for MS DOS systems. If you don't want the disk,

write the programs yourself: for the first program

(s t a r t) . use d i f f t i m e o to write into a file the

number of seconds since some reference point just

before giving the command t ex \ j obnarne, and just

afterwards, use the second program (e lapse) to

open the file and subtract its contents from the

present number of seconds since the same point of
reference. You could use a shell script or L L . ~ ~ ~ file"

containing. say,

to do this. If you don't like C, you can use TEX
instead, but if you do, you will have to use minutes

instead of seconds. Cf. \time. page 273. The

W b o o k : to keep things simple, you may wish to

avoid using the TEX version in the middle of the

night since \ t ime gives you the number of minutes

since midnight. The reference point for d i f f t ime ()

used by (at least some) C compilers appears to be

New Years 1970.

Note. A disk (5.25in DSDD) containing source text

for the figures in these tutorials and the code files

used to produce them is available for MS DOS users

who are members of the TEX Users Group. The

disk includes. in addition to the files mentioned
above. source text for this tutorial and some of the

others in the pipeline. as well as TUGhoat style files

(described in TUGboat 10. no. 3. pages 378-385).

that may be used to typeset the tutorials. Send $6

to the address below. which includes a royalty for

the TEX Users Group. Outside North America, add

$2 for air postage.

I had overlooked the existence of syntax. chk and

\font\dummy until Barbara Beeton called them to

my attention. Ron Whitney has been a great help

when I encountered problems: If I couldn't solve

them, he did; and often when I did solve them. he

produced better solutions. I am very grateful to

them both.

o Lincoln K. Durst

46 Walnut Road

Barrington. RI 02806

start

tex <filename>

elapse

