
TUGboat, Volume 11 (1990), No. 2

I suffered plenty of setbacks en route to a

working set of circular macros. Sometimes the

results of faulty macros were interesting in their

own right. Take a look at the best such mistake in

Figure 9.

Figure 9. Mistake.

If you try this stuff yourself, note that circular

typesetting may throw your previewer and device

driver for a loop (apt?). You have been warned.

o Alan Hoenig
17 Bay Avenue
Huntington, NY 11743

(516) 385-0736

Graphics

On the Implementation of Graphics

into TEX

Gerhard Berendt

1 Abstract

The problem of implementing more complex pic-

tures than are provided by the IPm p i c t u r e en-

vironment into a typical PC version of W is dis-

cussed. In the first part of the article (Sections 2

and 3) a solution is presented which circumvents the

usual limitation of the restricted main memory of

rn and respects the moderate hash size of the PC

versions of W. This solution remains, however. to-

tally within the frame of m. In the second part

(Sections 4 to 7) a solution to the problem is given

which makes use of Postscript within the W envi-

ronment.

2 Introduction

While 7&X is a very powerful tool for producing

mathematical and technical texts, it has its well-

known deficiencies as far as the implementation of

graphics is concerned. The problem is twofold:

- The hash size of about 3000 for a typical PC

version of TEX limits the complexity of macro

packages which implement graphics. It is,

e.g.. impossible to add the rather comfortable

F'ICTEX macro1 package to IPl$X because of

an overflow of the hash size. In order not to

surpass the given hash size, it is therefore nec-

essary to use a more moderate graphics macro

package. if the I4W environment is obligatory.

Our solution to this problem will be presented

in the next section.

- Another more subtle problem results from the

fact that even a picture of only moderate com-

plexity -if it is not produced by characters of

special fonts (as is the philosophy in L A W) -

might overflow the main memory of W. It is

then impossible to compile a page which con-

tains this picture. The only way out of this

difficulty is to compile text and picture sepa-

rately and either to combine the two dvi files

afterwards or to print text and picture in two

runs.

In the first part of this article, we present a

compromise solution to both problems which:

enables the user to produce texts plus included

pictures of moderate complexity; and

needs nothing but I4W running on a P C to-

gether with a small graphics macro package, a

parameter file extraction program and (option-

ally) another utility program which automates

the creation of the picture input.

Our solution relies neither on special output de-

vices or files (e.g. laser printers or Postscript files)

nor on drawing programs or special picture for-

mats. Instead, the pictures are drawn within the

I4m p ic tu r e environment which is enriched by a

few graphics macros from the extended epic style.

M.J. Wichura, TUGboat 9, no. (2) , p. 193,

1988

TUGboat, Volume 11 (1990), No. 2

3 Graphics via techniques

In the following, we use the rather small Enhanced

Picture Environment package,' which is given by

the epic style format, together with the bezier

style format3 for drawing curves, and finally a few

additional macros for producing gray tones within

certain parts of the picture. As the bezier style and

the epic style are public domain files, we concen-

trate on the additional macros, which are included

in the file neubild. sty.

3.1 The picture input

There are two main macros within this style file,

\varbild and \VARBILD. The macro \varbild has

7 parameters, 3 of which are optional: the complete

macro goes as follows:

#I is optional; its possible values are <1>,

<r>, <c> or <v>, the default being <v>.

The values of #I have the following meanings:

The picture is located at the left margin

of the text, and the text flows around

the picture on its right side.

The picture is located at the right mar-

gin of the text, and the text flows

around the picture on its left side.

The picture is centered, and there is no

text neither at the right nor at the left

of the picture.

<v>=<r> if the pagenumber is odd, else

<v>=<l>.

and #3 denote the width and the

height of the picture in multiples of

\unit length. The default \unit length pro-

vided by neubild. sty is 1 mm.

#4 and #5 are again optional; the defaults

are #4=#5=0. They denote the origin's

translation in the coordinate system of the

I4m picture environment, again as multi-

ples of \unitlength.

#6 denotes the contents of the picture en-

vironment (without the control sequences

Copyright (a) Sunil Podar, Dept. of Com-

puter Science, SUNY at Stony Brook, NY 11794,

U.S.A.

Copyright (0) 1985 by Leslie Lamport

As the macro package was developed in the

context of a German book project, the names of the

macros are given in German, which we hope will not

give rise t o irritations.

\begin{picture) and \end{picture)).

#7 finally is a correction parameter; it de-

notes the number of lines by which w ' s

calculation for the picture depth should be

shortened. #7 can be positive, zero or neg-

ative and does not have any meaning with

the option #l=<c> (but must be set to zero

in this case).

The macro \VARBILD has 8 parameters, 3 of which

are optional. Here, instead of including picture

commands explicitly as with argument #6 above, we

pass filenames so that the picture may be laid out

on a separate run of w . Two filenames are needed

for each picture: one for a I4w 'driver' file which

places the picture in the proper position on a page,

the other for a file containing picture commands.

The complete macro goes as follows:

The parameters #I through #5 have the same

meaning as in the macro \varbild: again,

I , 84 and #5 are optional.

#6 has the same meaning as the parameter

#7 in \varbild.

#7 is a string in DOS-format; it denotes

the name (without extension) of a (&m
drzver) file, which becomes the source file

of the picture in question on a separate run

of Tf?-X (since \VARBILD only provides an

empty frame of the correct picture dimen-

sions within the text file).

88 finally - again a string like #7 - denotes

the name of a (pzcture source) file which will

contain the picture commands called by the

corresponding (D m drzver).

The macro \varbild is used whenever all the

commands of a picture shall be enclosed within the

text file, while the macro \VARBILD creates an empty

frame of the chosen dimensions within the text file

and, in addition. writes to a parameter file the in-

formation needed to build pure picture files, each

of which will be placed at the correct position on

its respective page. If the \VARBILD alternative is

chosen, the text file must start with the line

\immediate\openout\bilder = (parameter file)

and its last line must be

\closeout\bilder

After compilation of the main text file, which

will also generate the parameter file, the picture files

TUGboat, Volume 11 (1990), No. 2

have to be created with the program MAKEPIC via

the command line

MAKEPIC (parameter file)

This program produces for each line of the parame-

ter file (i.e. for each occurrence of \VARBILD in the

source file) a (U W driver) file with the name given

by argument #7 of \VARBILD. This file contains

nothing but the picture environment at the correct

place.5 It can therefore be compiled as usual and

be printed onto the appropriate page separately. If

the placement of the picture is not quite accurate, it

is possible to move the picture by applying the pro-

gram MAKEPIC once more to the parameter file,

this time using the option of moving the coordinate

system in question.

3.2 Picture creation and implementation

While it is rather easy to construct pictures within

the picture environment of IPm as long as there

are only lines, vectors, circles and text involved.

it is very cumbersome to introduce picture input

which contains BCzier functions or other complex

features. Therefore, the MAKEPIC program cre-

ates a IPW file with only the frame of the pic-

ture, while the actual picture input is contained in

an input file, the name of which is given by the pa-

rameter #8 in the \VARBILD macro. The whole pic-

ture input -apart from the \begin(picture) and

\endCpicture) lines - is thus expected as the con-

tents of a (picture source) file. This file may be

created manually or via the additional utility pro-

gram PICTPLUS. This program asks either for a

function x = x(t), y = y(t) or for an area to be shad-

owed, and will in return produce a IPm input file,

which can be inserted into the (@ W driver) file

in place of the line \input (pzcture source) or can

be left within the working directory as the (picture

source) file itself.

Thus, the whole procedure for including a pic-

ture of moderate complexity into a M7QX text file

by help of the \VARBILD goes like this:

1. Insert the line

\immediate\openout\bilder=(parameter file)

at the very beginning, and the line

\closeout\bilder

as the last line into your IPm source file.

2. Introduce the option neubild into your docu-

ment style.

It is, of course, also possible to write the picture

source file by hand, using the information from the

parameter file.

3. Write the source file and insert a \VARBILD

macro at the beginning of each paragraph where

a picture should be placed. Be sure that the

text that will flow around the picture frame

does not contain any \par macro (this does

not apply if the option #l=<c> is chosen). It is

advisable to write the whole paragraph which

surrounds a picture in \sloppy mode, since the

\textwidth is reduced within this paragraph

whenever you produce a picture which does not

cover the whole width of the page.

4. Compile the source file and thereby create the

parameter file automatically because of step 1.

5 . Run the program MAKEPIC on the parameter

file to create the (U r n driver) files for each

occurrence of a \VARBILD.

6. Create the (picture source) files for each of the

(U W driver) files either manually or via the

program PICTPLUS. Insert these files into the

(U r n driver) files in exchange for the line

\input (picture source) or put these \input

files into your working directory.

7. Compile the (D m driver) files separately.

8. Print the main dvi file first and then the (P W

driver) dvi files separately onto those printer

output pages where the corresponding empty

frames of the pictures have been produced. If

for a certain picture there are slight devia-

tions from the correct placement, compile the

(U r n driver) file in question once again, this

time using the option of moving the coordi-

nate system appropriately, or use the facilities

of the MAKEPIC program to shift the picture

slightly.

While the whole procedure might look a little

bit complex, one should bear in mind that -apart

from the two auxiliary programs MAKEPIC and

PICTPLUS - there are no requirements necessary

in addition to the pure TEX mechanism. In the sec-

ond part of this paper a more elegant solution to the

problem, using PostScript files, will be presented.

4 Implementation of graphics via

PostScript

With the advent of software driven PostScript in-

terpreters like FREEDOM OF PRESS it has become

reasonable to print 7QX files via PostScript on a

multitude of cheap printers. Of course, printing

time is much longer in PostScript than it is with

a driver like PCDOT or PTIJET. It is there-

fore worthwhile to switch to the PostScript scheme

only if the results are inconvenient or insufficient

otherwise. This is the case if even only moderately

TUGboat, Volume 11 (1990), No. 2 193

complex pictures are to be included into QX or

L4QX text files, because on the one hand there ex-

ists only a very limited variety of picture elements

within TJ$ or U r n , and-which is much worse -

on the other hand the compilation of the source file

may fail due to memory restrictions of 7Q?J.6 There-

fore, if time is not an important factor it might be

convenient to create a dvi file from the source text

together with a PostScript file for each of the pic-

tures to be included and then to combine these files

into one PostScript file, for instance, via the PTIPS

driver. PTIPS enables the user to insert any ordinary

PostScript file at an arbitrary position into the main

file by help of the TpX \special command. In the

following, a scheme is developed to use this feature

in LPm files which contain pictures of moderate

complexity.

5 Preparation of the main text file

In order to prepare the main text file for the inclu-

sion of pictures, a method similar to the one given in

the first part of this paper is used. Again, the option

neubild has to be added to the documentstyle of the

main file, and a parameter file has to be opened by

the line

\immediate\openout\bilder=(parameter file)

and closed by the line

\closeout\bilder.

The file neubild . sty contains, in addition to the

macros already mentioned, the macro \varpsbild

which writes an entry into the parameter file and

sets an empty frame of the desired size and position

within the main file. In addition to this, \varpsbild

puts a mark equivalent to the line

\special{ps:bildname.ps)

at the correct position in the main text dvi file after

compilation. This mark enables the PTIPS driver to

insert the PostScript file bi1dname.p~ at this po-

sition as it creates the PostScript file of the main

text.

The macro \varpsbild is given as

\varpsbild[#l] (#2 ,#3) (#4, #5) #6#7

where the parameters #1 to #5 have the same mean-

ing as the corresponding parameters within the

macro \VARBILD, while the parameters #6 and #7

have the following meaning:

#6 is mandatory; it is the name of the PostScript

#7 is mandatory; it has the same meaning as in

the macro \varbild (it denotes the number of

baselines by which TEX must underestimate the

surrounding text to place the picture properly).

6 Preparation of pictures to be included

In principle, any PostScript picture file can be cre-

ated manually by help of any appropriate editor us-

ing the PostScript language. Anybody who has a

fluent knowledge of the PostScript language will cer-

tainly prefer this way to other possibilities. Since.

however, many users of TJ$ are not so experienced

in PostScript, we developed a small PASCAL pro-

gram which can be used interactively to input the

most common elements of the I 4 W picture en-

vironment and output a complete PostScript file

ready for insertion into the main text PostScript

file. This program. TEX2PS, is menu-driven and al-

lows construction of objects (line), (vector), (curve),

(ellipse) and (text) in any desired combination, solid

or dashed, with or without shading. Moreover, mul-

tiple constructs of those objects can be performed

in any order and PostScript program lines can be

added at will manually. Thus, the elements of any

picture which can be created within a slightly ex-

tended picture environment of IPQX (as, e.g., in

the epic style) can be input to TEX2PS and be

transferred to the corresponding PostScript descrip-

tion. By means of the procedure described above it

is then possible to produce a PostScript file which

combines the main text with any number of pictures

of that sort. The combined file can be printed either

directly by a PostScript printer or via a software in-

terpreter like FREEDOM OF PRESS or similar program

on many non-Postscript printers.

A few remarks should be made concerning the

program TEX2PS. Though it is meant to be used

without referring to the PostScript language, a slight

knowledge of the PostScript graphic elements is rec-

ommended (of course, you might get the scheme

by trial and error after a while). The assignments

'Draw' (='stroke7), 'Fill7 and 'Eofill' have their

origin in the PostScript language and do exactly

what they would do in a PostScript setting7; how-

ever, they are enclosed between 'gsaue' and 'gre-

store ' lines. I t is therefore possible to shade an area

first and then to draw its border lines without re-

peating the whole pattern. The option 'Link' is not

a PostScri~t o~era tor : it is used to construct a con- . L

file which contains the picture elements to be tinuous path of equal' or different elements (for in-
put into the empty frame. stance to be shaded afterwards).

Section 1. e.g. The PostScript Language Reference Man-

ual by Adobe Systems Inc., Addison-Wesley, 1985

TUGboat, Volume 11 (1990), NO. 2

Finally, it should once more be emphasized

that -if you have a good knowledge of the Post-

Script language - it is generally much more efficient

to create the picture PostScript file by directly edit-

ing the picture rather than using the automated but

necessarily clumsy version which is provided by the

program TEX2PS.

7 The picture implementation

The method described above yields the following

steps of procedure:

1. Start your main text file with the line

\immediate\openout\bilder=(name of

parameter file)

and close it by the line

\closeout\bilder.

2. Introduce the option neubild into your docu-

ment style.

3. Write your text file and introduce the line

\varpsbild . . .
with the appropriate parameters as explained

above at any place where you want to insert a

picture.

4. Compile the text file to the corresponding dvi

file. This also produces the parameter file.

5 . Create all the pictures in a PostScript set-

ting either manually or by help of the program

TEX2PS, taking into account the correct size

and name of every picture (the parameter file

contains these parameters for each picture in-

volved).

6. Convert the main dvi file by help of the PTIPS

driver, using all of the PostScript picture files,

to the final PostScript file.

7. Print the final PostScript file either on a Post-

Script printer or via a soft interpreter like

FREEDOM OF PRESS.

8 Conclusion

The two procedures described above are certainly

not the most elegant ones for implementing graph-

ics in TEX. As has been shown, the first method,

however, has the advantage of not using any graph-

ics input apart from that which is admissible in the

L4W picture environment. and it is completely

driver-independent. A somewhat similar approach

to this problem is, for instance, given by M. Ballan-

tyne and collaborators8; their method, however, is

M. Ballantyne et al., TUGboat 10, no. 2,

p. 164, 1989

at the moment not applicable within a I4m envi-

ronment and. moreover, does not seem to work very

well if the pictures are to be surrounded by text pas-

sages. On the other hand, that method can also be

used to include complex tables into a 7QX file.

We have not discussed the various methods

which use graphics input from different drawing pro-

grams to be included into TEX source files. These

methods depend heavily on the output format of

the drawing programs (e.g. whether or not they are

pixel oriented) as well as the ability of TEX drivers

to implement the different graphic formats (usually

by means of \special commands).

The second procedure allows the insertion of

much more complex pictures into LAW text files at

the price of using part of the PostScript machinery.

We feel that it might be a good compromise if the

time factor does not have first priority and the pic-

tures to be inserted into the text are of moderate

complexity.

A diskette containing the files used in these

approaches can be ordered from the author.

Please, enclose an empty diskette and DM 5,-

for postage.

o Gerhard Berendt

Institut fiir Mathematik I
Freie Universitat Berlin

Arnimallee 2-6

1000 Berlin 33

Germany

berendtQfubinf.uucp

Including Macintosh Graphics

in Documents

Len Schwer

Abstract

The basics of including Macintosh graphics in I4m
documents are discussed for the person who is inex-

perienced at doing so. Because there is no universal

way to incorporate such graphics, other than with

scissors and glue, this article tries to be as general as

possible, but ultimately references specific software

and hardware, e.g. ArborText's DVIPS, Trevor Dar-

rell's psf ig macros, and an Apple Laserwriter+.

The reader is assumed to have some knowledge of

