
Getting m n i c a l :
Insights into QjX Macro Writing Techniques

Amy Hendrickson
wnology Inc., 57 Longwood Avenue, Brookline, MA 02146
617-738-8029 Internet: amyh@ai.mit.edu

Abstract

Most of us understand the basic form of 7&X macros but
that understanding alone is often inadequate when we need to
solve certain problems. We need additional insight to be able
to develop methods of passing information, moving text with
changed catcodes, preserving blank lines. and more. Writing a
large macro package brings in a new set of issues: how to avoid
bumping into implementation restrictions. e.g., 'constraints of
hash size, string size. and others: how to make a pleasant user
interface; how to make your code as concise as possible.

Some of the techniques to be discussed here include making
a macro with a variable number of arguments: changing catcodes
in macros, defining a macro whose argument is intentionally
never used: conserving hash size by using counters instead of
newifs; csname techniques and non-outer dynamic allocation;
and table making techniques. Finally. some suggestions are
included on methods to use when developing new macros.

A Quick Review of Some Important

Primitives

Expandafter. \expandaf t e r , a TEX primitive
often used in this article, affects the timing of
macro expansion. Macro expansion is that step in
W ' s processing which changes a control sequence
to whatever that control sequence is defined to
represent. \expandaf t e r is usually followed by
calls to two macros. It expands the first macro
following it only after it has expanded the second.
Thus, \expandafter makes it possible for the first
macro to process the pieces of the second macro as if
the second macro were written out, not represented
by a control sequence.

Here is an example: If we define \ l e t t e r s and
\ l o o k a t l e t t e r s ,

\def\letters{xyz)
\def\ lookatletters#l#2#3@irst arg=#l,

Second arg=#2, Third arg=#3)
and follow \ l o o k a t l e t t e r s with \ l e t t e r s ? !,
\ l o o k a t l e t t e r s takes the whole definition of \ l e t -
t e r s as the first argument. ? as the second argu-
ment. and ! as the third. Thus

\ lookat let ters \ le t ters ? !

produces
First arg=xyz. Second arg=?, Third arg=!

But if we use \expandafter, \ l o o k a t l e t t e r s will
be able to process the contents of \ l e t t e r s for each
argument:

produces
First arg=x, Second arg=y, Third arg=z ? !

String. \ s t r i n g is a l&X primitive which causes
the control sequence following it to be broken into a
list of character tokens in order to print the control
sequence or to process it with another macro.
\ t t \s t r ing\TeX will produce \TeX. (What is the
\tt doing in there? It makes the backslash print
as backslash (\) when it would otherwise print as a
quote mark ("). If you are curious about this, look
up \escapechar in The W b o o k .)

csname. \csname . . . \endcsname is an alterna-
tive way to define and invoke a command.
Its function is the inverse of that of \ s t r i n g .
\ s t r i n g takes a control sequence and turns it into
tokens: \csname . . . \endcsname takes tokens and
turns them into a control sequence.

TUGboat, Volume 11 (1990), No. 3 -Proceedings of the 1990 Annual Meeting

Amy Hendrickson

Commands called for with \csname produce the
same results as the backslash form (e.g., \csname
TeX\endcsname and \TeX are equivalent) but the
\csname construction combined with \expandaf t e r
allows you to build and invoke a control sequence
dynamically at the time the file is processed, as
opposed to knowing its name at the time the
macros are written. This technique has many
interesting and useful applications, as we will soon
see.

If and ifx. Since both \ i f and \ i f x are condi-
tionals used to compare tokens, the 'l&,X user may
well wonder when to use \ i f and when to use \ i f x.
When we understand how each of these conditionals
works, we may conclude that the answer is to use
\ i f only when comparing szngle tokens and to use
it with care.

How 'if' works. \ i f expands whatever im-
mediately follows it until it arrives at two unex-
pandable tokens. It then compares them to see if
their charcodes match. This test is useful to see if
a given letter is upper- or lower-case and in some
other instances where we need to test a single token.

The two tokens that are compared are the first
that appear after \ i f , even if they are both found
inside the same macro following it. Understanding
that principle makes sense of these samples which
would otherwise be mystifying.

\def\aa{ab)

\def\bb{ab)
\if \aa\bb

tests false, because \ i f expands \aa and compares
'a' with 'b'. Whereas

\def\aa{aa)
\def\bb{bb)
\if \aa\bb

tests true, because ?# compares 'a' with 'a' in the
macro \aa. \ i f doesn't process \bb since it has
already found two unexpandable tokens and in this
case will cause the letters 'bb' to print since the
conditional is set to true and \bb is found in the
true part of the conditional.

There is another problem to consider. Since
\ i f expands a control sequence to its bottom level,
meaning every control sequence that is found in the
definition of a command being expanded will itself
also be expanded, it may generate an error message
if a control sequence is expanded that contains an Q
in its name.

This problem arises because Plain 7JjX com-
monly includes Q as part of macro names. with the
catcode of @ set to that of a letter. The catcode of Q
is set to 'other' in normal text so that when a Plain

TEX command of this sort is expanded in text the
Q is no longer understood as a letter, and ?# will
give the user an error message about an undefined
control sequence. For example,

\if \footnote X Yes\else No\f i

produces this error message:
! Undefined control sequence.
\footnote #I->\let \@sf

\empty \ifbode. . .
How 'ifx' works. \ i fx , on the other hand,

will not have this problem since it only expands to
the first level of macro expansion. If \dog is defined
by \def\dog{\cat), for instance, \ i f x will expand
\dog as far as \ca t but will not expand \ca t to use
its definition.

This means that when we want to compare
control sequences, and to supply one control se-
quence as an argument to a macro, we can use the
\ i f x conditional to look at the name of the macro
supplied without having to worry about macros
that may be contained in its definition.

For example, we can define \def\aster{*)
so that we can use it to compare with another
macro. Inside the macro where we want to make
the comparison, we can write

\def\sample#1{\def\one{#l)\ifx\one\aster . . .
making both the argument to \sample and * be
defined as macros.

When \sample is used, \ i f x causes only one
level of expansion. If the argument given to \sample
is \footnote. as in the \ i f example above. \one
will be defined as \def \one(\f ootnote). \ i f x
will expand \one to find ' \footnote' but will not
expand it any further, and will not give an error
message.

Another reason to use \ i f x to compare control
sequences is that \ i f x will pick up both control
sequences following it and compare them. When we
try the same samples with \ i f x that we did with
\ i f , we will find that we get results opposite to
those we got with \ i f -and we will get the results
we would want when comparing control sequences.

\def\aa{ab)

\def \bb{ab)
\ifx\aa\bb

tests true, because \aa and \bb match each other
in their first level of expansion, whereas

\def\aa{aa)
\def \bb{bb)

\ifx\aa\bb

tests false because the first level of expansion of \aa
and \bb do not match.

360 TUGboat, Volume 11 (1990). No. 3-Proceedings of the 1990 Annual Meeting

Getting m n i c a l : Insights into Macro Writing Techniques

TUGboat, Volume 11 (1990), No. 3 -Proceedings of the 1990 Annual Meeting 361

Picking Up Information

Defining a macro that will pick up and pro-

cess a variable number of arguments. There
are many instances where you might want to allow
a variable number of arguments. Table macros
are one such case, in which the user might supply
the width of each column as an argument, and
the number of columns may well vary from table
to table. A table alignment macro that deter-
mines whether each column in the table should be
aligned to the right, left, or center, is another case
where processing a variable number of arguments is
necessary.

There is a general method for constructing
a macro that will accomodate a variable number
of arguments. This method is to pick up all the
arguments as one unit and then take that unit apart
as a second step. For example, \table lin 2.3in
4in* can be the command to start a table using
dimensions to specify the width of each column.
When \table is defined as \def\table#l*{. . . .)
we can pick up all the dimensions as the first
argument, since the first argument ends with *,
then use a second macro to process each dimension
as its argument. The second macro will call itself
again after each dimension is processed until all the
dimensions have been used.

Here, in a sample macro, we define \pickup
as \def \pickup#l*(. . .3 to use it to pick up
everything between \pickup and the * as its first
argument. Then we use \expandafter to allow
\lookatarg to process the contents of the first
argument.

The definition of \lookatarg contains a looping
mechanism: It is a conditional that tests to see if its
argument is equal to '*'. It will keep calling itself
(recursing) until its argument is *. It calls itself by
redefining the command \go within the conditional,
and calling for \go outside the conditional. (\go
must be placed outside the conditional. If it were
to be used inside the conditional it would take
the \else or the \fi as its argument and massive
confusion would result.) When \lookatarg sees '*'
as the argument, it will define \go as \relax and
thus will not call itself again.

First we define \aster so that we have a
command to use with \ifx to compare with the
argument of \lookat arg:

\def \aster{*)

Now we can compare the argument of \lookatarg
with \aster. Thus, with

\def\lookatarg#1{\def\one{#l)

\ifx\one\aster\let\go\relax
\else Do Something \let\go\lookatarg
\f i\go)

if we use the \pickup macro as follows
\pickup abc def*

the results would be:
D o Something Do Something Do Something Do

Something Do Something D o Something

\lookatarg has been invoked 6 times since it picked
up 6 tokens before it found the *. We can substitute
some other command for 'Do Something' and build
a more useful macro.

Here are two applications of the technique
demonstrated in \lookatarg; a macro to underline
every word in a given section of text, and a macro
to process a given section of text to imitate the
small caps font.

First, we define \underlinewords, which picks
up the whole body of text to be underlined:

\long\def\underlinewords #I*{%
\def\wstuffi#l)\leavevmode
\expandafter\ulword\ustuff *)

Here \leavemode asks TEX to go into horizontal
mode. Since each word will be placed in a box,
we need this command to prevent the boxes from
stacking vertically, as they would in vertical mode.

Now we define \ulword which will unpack the
text picked up, word by word, put each word in a
box, and provide a horizontal rule under each:

\long\def\ulword#l {\def\one{#l)%
\ifx\one\aster\let\go\relax

\else\vtop{\hbox{\strut#1)\hrule \relax)
\let\go\ulword

\f i\go)

The space given after the argument number in the
parameter field will allow us to pick up one word at
a time, since the collection of the argument will be
completed only when \ulword sees a space. Here
we use \underlinewords:

\underllnewords
non-outer dynamic allocation*

which results in:
non-outer dynamic allocation
The macro \fakesc is another construction

using this technique. It lets you set text in large
and small caps, imitating the 'small caps' font. Its
arguments are, in order. the font for the larger
letters. the font for the smaller letters, and the text
that is to be set in small caps.

When we use \fakesc we need to declare the
two fonts to be used:

\f ont\blg=cmrlO
\font\med=cmr8

Amy Hendrickson

and then
\fakesc\big\med Here are Some Words to be

Small Capped. NASA, Numbers, 1990*

will result in:
HERE ARE SOME WORDS TO BE SMALL
CAPPED. NASA, NUMBERS, 1990
The macro starts by defining the two fonts and

the text to be processed; there is a space after #3 in
\def\stuff(#3 3 because \pickupnewword needs
a space to complete its argument when the last
word is found as \stuff is expanded:

\def\fakesc#l#2#3*{\def\bigscfont{#l)%

\def\smscfont~#2~\def\stuffC#3 1%
\expandafter\pickupnewword\stuff *}

\pickupnewword picks up one word at a time, in
order to preserve the space between words. If we
just asked \pickupnewlett to process the entire
third argument of \f akesc, the space between
words would be thrown away as irrelevant space
appearing before the next character being looked
for as the argument of \pickupnewlett. Here,
then, is the definition of \pickupnewword:

Once \pickupnewword has picked up the word.
\pickupnewlett is used to test each letter to
determine whether it should be capitalized. If
so, it uses the larger size font: otherwise, the
smaller. \pickupnewLett tests to see if the argu-
ment is uppercase by using the first argument to
define \letter. \def \letterC#i). and then defines
\uclett er in an uppercase environment.

Now it uses the \if conditional to compare \letter
and \ucletter If they match \pickupnewlett

makes the current letter or number be printed in
the larger font; otherwise the smaller font is used.
Note that we can use the \if conditional here since
we are only comparing single letters. So, finally, the
definition of \pickupnewlett:

When to pick up text as an argument, and

when to to pick up text in a box. The correct
timing of catcode changes is an issue of concern to

the macro writer. Picking up text as an argument
will usually be the right way to provide information
for the macro. but will fail if you need to change
catcodes, since catcodes are irrevocably assigned at
the time rn reads each character. Thus, by the
time Tl-$ has picked up an argument, the catcode
of all the tokens in the argument are set, and
no amount of fiddling with the argument within a
macro will change this.

Even a catcode change asked for in the body
of an argument will not effect a catcode change
because the catcodes of the tokens will already be
set by the time expands the request for the
catcode change.

There are two ways to solve this problem. In
simple cases, one can build a macro containing the
desired catcode changes and then invoke a second
macro within the first, i.e.,

In \changecat a catcode change is produced
by \obeylines which changes the catcode of the
end-of-line character, - ^ M , to 13 ('active') so that it
can be defined as \par. Once that catcode change
is made. \pickupchanged is invoked. Its argument
has the end-of-line character set to category 13
at the time the argument is picked up. Notice
the \bgroup command in \changecat is matched
with the \egroup command in \pickupchanged to
confine the catcode change.

Used:
\changecat

What
Happens
Here?

\endchange

xx What YY
Happens
Here?

But, though this example will work for a
catcode change set within the \changecat macro it
will not allow \changecat . . . \endchange to pick
up an argument that contains a catcode change,
for instance, an argument containing macros to
produce verbatim text, as we could do with the
following technique.

The two-part macro defined below will build a
box. starting it in \pickupcat with \setboxO\vtop
\bgroup. Any material found between it and \end-
pickup will be expanded, and finally the box will be

362 TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

Getting W n i c a l : Insights into W Macro Writing Techniques

completed with the \egroup found in \endpickup,
a construction that allows a catcode change between
the first aild second part of the macro.

\def\pickupcat{\global\setbox0
\vtop\bgroup\hsize=lin\obeylines}

\def\endpickup{\egroup%

\centerline{XXX\vtop{\unvboxO~YYY~}

\pickupcat. . .\endpickup is shown using a pre-
viously defined verbatim environment, \begin-
verb. . . \endverb, to pick up and move verbatim
text in a box. Once we see this principle, we
can see that a revision of this macro would allow
us to place verbatim text in a figure environment,
or in a table, or in another environment where it
would normally be difficult to introduce material
with changed catcodes. For one example:

\pickupcat

\beginverb
Test of

%$--*a\
Verbatim

text.
\endverb

\endpickup

produces:

XXX Test of YYY

Verbatim
t e x t .

Looking ahead at end of line to preserve
blank lines. Since TEX normally ignores blank
lines between paragraphs and in some cases we
might want to maintain blank lines, we need to
develop a way to test for blank lines and provide
vertical space when one is present. In this case, we
are not interested in picking up text but in picking
up information. What comes after each end-of-line
character?

As previously mentioned, \obeylines changes
the end-of-line character, -7 to \par. You can
define -^M to do other things as well. For instance,
you can define it to be a macro that will supply
a baselineskip when the next line is blank or a
lineskip when the next line is not.

In this example, --M will be defined as \li-
neending, a macro that includes \ fu tu re l e t to
look ahead in the text. If the character that it sees
is itself (\lineending), the next line is blank, since
there is nothing from one end-of-line character to
the next one. The macro \looker will then supply
a baselineskip. If it does not see itself, indicating
that the next line is not blank, \looker will supply
a lineskip:

Example:
\saveblanklines
Here is

a blank line,
and a non-blank line.

\endsavelines

which produces
Here is
a blank line,
and a non-blank line.

Passing Information: When Counters

Can be More Advantageous than

Newif's

Hash size, the size of that part of m ' s memory in
which it stores control sequence names, is usually
not something about which the macro writer has to
be concerned. When building a large macro package,
however, hash size can be exceeded, making the
number of control sequences defined an important
issue. One way to economize on the number of
definitions in a package is to use counters to pass
information rather than using \newif s.

When the number of control sequences is not
important, \newif can be used to create a condi-
tional. This conditional can then be set to true or
false in one macro, and tested to see if it is true
or false in another as a way of passing information
from one macro to another.

However, every time a \newif declaration is
used, three new definitions are generated. If saving
hash size is an issue, we can use \newcount instead,
and only one new definition is generated.

We can use \newcount to allocate a counter
and assign it a name, e.g., \newcount\testcounter.
Then, instead of setting a conditional to true or
false, i.e., \ g loba l \ t i t l e t rue , and testing for it,
i.e., \ i f t i t l e . . . \ e l s e . . . \ f i we can test for
the value of the counter. For example,

TUGboat, Volume 11 (1990), No. 3 -Proceedings of the 1990 Annual Meeting 363

Amy Hendrickson

could be the equivalent of \ g l o b a l \ t i t l e t r u e . We
can then use this test:

Counters have the additional advantage of
allowing you to test for a range of niiinbers, i.e.,

\ifnum\testcounter>l . . . \else . . . \fi
so you can write more compact code when testing
for a number of options.

For instance, if we were to write a macro that
allowed the user to choose to fill a box by pushing
the text to the left, center, or right, we could
assign a numerical value to each of the options. If
we assigned a value to \testnum according to the
plan, l e f t=O, cen t e r= i , r igh t=2 , we could test
for a range of numbers when another macro was
determining which way to fill the box. The test
could look like this:

\hbox to\hsize{\ifnum\testnum(l

%% if text is to be pushed to the left
\else

%% if text is to be either centered or
I I h! pushed to the right, do \hfill

\hf ill\f i

(t e x t)
\ifnum\testnum>l

%% if text is to be pushed to the
%% right, don't do \hf ill

\else

%% or text is either centered
%% or pushed to the left

\hf ill\f i)

This same principle can be used in more complicated
cases as a way of reducing great masses of nested
conditionals to a test of the range of the value of a
particular counter.

Methods of Conserving Hash Space

As mentioned earlier, using counters to pass infor-
mation rather than \newif \ thinspace s is one way
to help prevent the hash size from being exceeded.
Here are some others.

Input separate macro files on demand. To
reduce the number of macros in a macro file, break
up the complete macro package into a general macro
file and a number of secondary macro files. Within
the general macro file definitions can be made that
read in the secondary files only when the user calls
for a macro for a particular function. For instance, a
file containing all the table macros will only be read
in if the user uses the general table macro. This
principle can be used for listing macros, indexing
macros, and any other sort of macro that will not
necessarily be used for every document.

Using non-outer dynamic allocation. Dynamic
allocation is the way macro writers are able to
access the next available number of a dimension,
box, or counter at processing time and assign
a symbolic name to it. \newdimen, \newbox and
\newcount are the commands that allocate these
numbers dynamically. It is safer to use dynamic
allocation in a macro than to use a particular
numbered box, counter, or dimension, since it
prevents accidental reallocation.

Unfortunately, all of the commands in this
useful set are \outer . which means that they
cannot be declared within a macro. By making
these dynamic allocation macros non-outer, we can
then include them inside macros and only declare
new counters or new boxes or new dimensions when
they are needed.

Here is how to make these commands non-
outer. Simply copy the original definition, supply
a new control sequence name and define them
without the \outer that originally preceded the
definition. For example, the definition of \newbox
was originally

\outer\def\newbox{%

\allocQ4\box\chardef\inscQunt)

Here are the new versions, \nonouternewbox. etc.:
{\catcode'\Q=ll

\gdef\nonouternewbox.E%

\allocQ4\box\chardef\inscQunt)

\gdef\nonouternewdimenC%
\allocQl\dimen\dimendef \inscQunt)

\gdef\nonouternewcoUntC%
\allocQO\count \countdef \inscQunt)

\catcode1\@=12)

In the next section we will see these non-outer
commands being used in a table macro, only making
named boxes or dimension when needed. Ma.cro
writers may find other uses for this technique as
well.

Fun with Csname

One of the really useful features of \csname is that
control sequences can be expanded within the body
of the \csname. . . \endcsname construction:

\expandaf ter

\ d e f \ c sname \ t e s tmac ro \ endcsnd%
(d e f i n i t i o n) . . . I

Counters can be used:
\expandaf ter

\def\csname\testcounter\endcsname{~

(d e f i n i t i o n) . . .
Counters with roman numerals can be used:

364 TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

Getting m n i c a l : Insights into Macro Writing Techniques

\expandaf ter
\def \csname\romannmeral\testcounter%

\endcsname{(definztion) . . .)
You can even make a definition out of numbers or
other symbols that ordinarly are not allowed for a
control sequence name:

\expandafter\def\csname 123&#\endcsname{%

(definztion) . . . 1

The only thing to remember here, is that any control
sequence made with \csname that contains anything
other than letters must be invoked as well as defined
with \csname: \csname 123&#\endcsname is the
way to use this macro.

Using \csname with \expandafter makes it
possible to do all sorts of things that would not
otherwise be possible. Some examples will be found
in the following text.

Macros that define new macros using data
supplied. One example involves having one macro
define another macro where the name of the second
macro depends on data supplied in the text.

In the example constructed below. \usearg

takes the first two words as arguments #I and
#2, reverses their order and uses them to make a
control sequence name. This control sequence is
then defined to be the complete name and address
of the person whose name was used to form the
control sequence name.

The order of the name is reversed so that the
names of the new macros can be sent to an auxiliary
file and be sorted alphabetically. The Appendix
illustrates how a more elaborate form of this set of
macros may be used to manipulate mailing lists.

\obeylines below changes the catcode of the
end-of-line character (- 7 4) to 13 so it can be used as
a argument delimiter in the definition of \usearg:
\obeylines also defines --M as \par so that every
line ending seen on the screen is maintained when
the text is printed:

{\obeylines

\def\usearg#l #2^-M#3"-M^^M{%
\expandafter\gdef\csname #2#i\endcsname

{#I #2\par #3})

With this definition,
\usearg George Smith
21 Maple Street

Ogden, Utah 68709

produces
George Smith
21 Maple Street
Ogden, Utah 68709

The Appendix contains a macro subsystem for
processing and sorting address labels; it demon-
strates this technique and many of the others
discussed in this paper.

Macros that define new macros using a
counter. Here is another use of \csname: In this
case, it is used to define a macro that will itself
define a new macro every time it is used, with the
name of the new macro determined by a counter
whose number is represented with roman numerals.

This can be used to construct a series of macros
that expand into areas of text to be reprocessed at
the end of a document. For instance, this technique
could be used to produce a set of slides from given
portions of the text of a document.

In the following example. each time \testthis
is called it will define a new control sequence. I t
makes the name of the new control sequence by
advancing \testcounter which is operated on by
\romannumeral to produce a new set of letters.
These letters will appear in the name of the new
macro.

Each control sequence is then sent to an aux-
iliary file, embedded in code to make the slide.
(The slide formatting code is represented here as
[[[I]]). At the end of the document the auxiliary
file containing all the definitions can be input, to
produce a set of slides.

\newcount\testcounter
\testcounter=501

%% just to start with a large
%% number to make into roman numerals

\immediate\openout\sendtoaux

\jobname.aux %% opening a file to write to
\def\testthis#l{%

\global\advance\testcounter by1
\expandaf ter\gdef \csname%

\romannumeral\testcounter XYZ\endcsname{%

[[[#11113
\immediate\write\sendtoaux{%
\noexpand\csname\romannumeral\testcounter

XYZ\noexpand\endcsname))

Here is an example of \testthis being used:
\testthis{This is the first bit of text . . . I
\testthis{This is the second ...)

The code above writes the following lines into the
. aux file:

\csname diiXYZ\endcsname

\csname diiiXYZ\endcsname

and when the .aux file is input, these commands
produce

[[[This is the first bit of text...]]] [[[This is the
second.. .I]]

TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

Amy Hendrickson

Designing generic code with csname. Another
really important use for \csname constructions is a
way of making compact code for a section of a macro
that repeats many times with a small variation each
time. Table macros are often examples of this kind,
since they tend to have repeating sections, one for
each column.

We consider below some parts of a set of
macros for table construction showing several ways
that \csname can be used. The form adopted for
the \hal ign command line. using a & immediately
after the \ h a l i p { , will allow the specifications for
this column to be used for each column in the table.

Using \csname with a counter allows this set
of commands to be defined only once. Each new
column entry will cause the \colcount counter
to advance making the otherwise similar column
definition use a new counter value inside the
\csname . . . \endcsname constructions.

Non-outer dynamic allocation is used to name
only those counters, dimensions, or boxes that are
needed when the table is made up. A new set is
declared for each column of the table. Since we don't
need to guess ahead of time how many columns are
going to be used, only those dimensions or boxes
that are needed will be declared. In addition.
\ i fdef ined (below) tests to see if the particular set
of dimensions and boxes has been used in a previous
table, and will only declare a new set if they have
not been defined previously.

\xtab and \dtab involve counters only. so they
can be used later in a \csname. . . \endcsname con-
struction where it doesn't matter if the expansion
will produce numbers as part of the control se-
quence. \gtab and \vtab, on the other hand, need
to be used as ordinary control sequences which is
the reason for the \romannumeral command that
will produce letters instead of numbers when the
\gtab and \vtab are expanded.

\as ize tab and \f in ishas ize tab will use these
boxes and counters to actually set the table entries.

Here, finally, are some definitions for table
construction:

\def \multipagetable{\global\f irstcoltrue

\halign\bgroup%

Bc\global\advance\colcount byl\relax%
\ifdefined{\the\colcount tab){){%

\edef \xtab{\expandaf ter\csname
\the\colcount tab\endcsname)%

\edef\dtab{\expandafter\csname

\the\colcount tabwide\endcsname)%
\edef\gtab{\expandafter\csname

\romannumeral\colcount
gapped\endcsname)%

\edef\vtab{\expandafter\csname

\romannumeral\colcount

\if def ined{align\the\colcount tab){){%

\edef\atab{\expandafter\csname
align\the\colcount tab\endcsname)%

\expandafter\nonouternewcount\atab)%

\asizetab##\finishasizetab\cr)

A \csname . . \endcsname construction defined
using one counter can be invoked using a different
counter, if that proves useful. Another part of the
code for multipage tables uses a second counter
to invoke macros defining boxes containing the
column heads, used when the table continues over
page breaks. Even though the original definition
used \colcount as the counter to name the boxes.
\contcolcount, another counter, can be used in
another macro to invoke the same definition. When

expands \csname. . . \endcsname construction
it produces a number as the replacement for the
counter, so the name of the counter used doesn't
affect the result. This might be helpful in cases
where you don't want to change the value of one
counter, but still wish to use a \csname construction
that contains it.

Tips on Table Macros

\everycr is a primitive for a token list. It
functions similarly to \everypar or \everymath in
that its definition will be used every time the named
environment is present, in this case after every \c r .
By setting \everycr equal to some definition we
can insert a set of commands after every line in a
table, since every line will end with a \cr . A simple
example is this:

\everycr={\noalign{\hrulel~

which will insert a horizontal rule automatically
after every \ c r in the table. Once this possibility
is discovered. the macro writer may realize that
there are many other things that can be done with
\everycr, such as including a set of conditionals
that will call for horizontal lines with breaks in
them, double horizontal lines. thicker horizontal
lines, thicker lines under some columns but not
under others. and so on.

You can include a counter which is advanced
every time \everycr is called, and use that counter
to determine how many lines have been used in
the table, in order to stop and restart the table.
making it possible to have a table that will continue

TUGboat, Volume 11 (1990), No. 3 -Proceedings of the 1990 Annual Meeting

Getting m n i c a l : Insights into 7J$ Macro Writing Techniques

for hundreds of pages without running out of
memory.

Moreover, you can call for a small vertical skip
in the \everycr definition which will allow the
table to break over pages. If you use the following
construction, your table will break over pages and
a horizontal line will appear both at the bottom of
the previous page and at the top of the new page,
without the user having to know ahead of time
where the table will break.

\everycr={\noalign{\hrule\vskip-Isp\hrule>)

When Doing Nothing is Helpful

The usual form of a macro with an argument is (in
its most basic form) \def \example#l(#l). There
are cases in which not using the argument can
be helpful when you want to get rid of something:
\def \example#lC).

You can use this principle to prevent large
sections of text from being processed by TEX.

\long\def\ignorethis#l\endignorei)

Thus
\ignorethis
Here is some text that will be ignored . . .
\endignore
This is where \TeX\ starts printing text..

will produce
This is where starts printing text ...

You might want to use this macro in the process
of debugging a document you are working on. All
text between \ignorethis and \endignore will
be ignored. making it possible for 'I$$ to print
only the part of the document in which you are
interested. TEX will run out of memory after about
6 pages of text is picked up by the \ignorethis
macro, depending on the implementation of TEX
being used, but if you want to ignore more than
6 pages of text you can end the first \ignorethis
with \endignore and enter a second \ignorethis
. . . \endignore.

A slight improvement, however, is needed to
prevent TEX from complaining if an \outer com-
mand is found in the argument of \ignorethis.
This is the error message which we would like to
avoid:

! Forbidden control sequence found
while scanning use of \ignorethis.

We can avoid it by changing the catcode of the
backslash to be that of a letter. Now there
will be no commands processed until \ignorethis
encounters \endignore and the catcode changes are
turned off.

{\catcode'\)=O I catcode' l\=12
IlongIgdefIfinish#l\endignore{Iegroup)%

3

Note that here, too, #I is never used in the
replacement part of the macro.

Getting rid of backslashes. Here is another
example of an argument that is thrown away:

\def\stripbackslash#1#2*C\def\one{#2~

which only uses the second argument. throwing
away the first argument, in this case stripping away
a backslash from a control sequence supplied by the
user. \stripbackslash can then be used in another
macro which needs a control sequence without its
backslash to work correctly. for instance:

When this is used,

produces
testmacro

Instead of simply printing the control sequence
without the backslash, \newdef can be rewrit-
ten to test t o see if a given macro has already
been defined. In this example, \newdef tests
to see if the expansion of the control sequence
\csname\one\endcsname, (where \one, was defined
by \stripbackslash to be the control sequence
supplied by the user minus its backslash) is equal t o
\relax. This takes advantage of the TEX conven-
tion that a previously undefined control sequence
invoked in a \csname . . . \endcsname environment
will be understood to be equal to \relax, whereas
an already defined control sequence will not:

\def\newdef#l{%

\expandafter\stripbackslash\string#l*
%% \stripbackslash defines \one

\expandafter
\ifx\csname\one\endcsname\relax

%% \one is expanded to be the
%% control sequence the user supplied
%% minus the backslash.
%% If csname construction equals
%% \relax, do nothing

\else 1% Else, give error message:
{\tt Sorry, \string#l has already been
defined. Please supply a new name.)

\f i)

In the test below, notice that we do not get an error
message for \cactus which hasn't been previously
defined, but we do get a message for TEX. which is
defined:

TUGboat, Volume 11 (1990). No. 3-Proceedings of the 1990 Annual Meeting

Amy Hendrickson

then

\newdef\TeX
\newdef\cactus

produces
Sorry, \TeX has

Please supply a

already been defined

new name.

Not using boxes. Similar to not using arguments,
there are times when setting a box and then not
using it can be useful.

When writing a macro to make text to wrap
around a given figure, we might want to use a
test box to put a given amount of text in, say,
a paragraph, which has been picked up as an
argument to a macro. We can then measure the
box to see if it will exceed the depth of the figure.
If it does not, the box can be used as it is, but if it
does, the box can be ignored and the argument re-
used, with changed \hangindent and \hangafter ,
to allow the text to fit around the figure neatly.
This works because text picked up as an argument
to a macro does not yet have its glue set, so it can
accomodate different line widths.

Another use for a box that is never printed
is to use it as a container in which to expand a
macro having symbols in the parameter field. For
example, if the macro \ s p l i t t o c e n t r y is defined
by

\def\splittocentry#l-#2-#3(\gdef\oneC#l)
\gdef\two{#2)\gdef\three{#3)}

we can use it in a another macro to process
an argument which may or may not include the
hyphens, i.e.,

The hyphens that are necessary to complete the use
of \ s p l i t t o c e n t r y are supplied in the boy but they
will not print if the replacement for #2 turns out to
supply the hyphens already. Since \one, \two, and
\ th ree are globally defined (\gdef), their definition
will be understood outside the box.

Some General Macro Writing Tips
There are several commands that can make the
process of macro writing easier.

\show is a m primitive that will cause the
definition of the macro it precedes to appear on your
screen when you run m on a file that contains
it. \show\samplemacro will cause the definition
of \samplemacro to be appear on your screen. for
example. \show can be temporarily included inside
a macro to let you see what is being picked up as
arguments. For instance, if

\test some, stuff

will help you see what is being picked up as
argument #i and #2. In this example the results are
obvious, but there are more complicated situations.
For example, when one macro is looking at the
contents of another macro, a test like this can
quickly help you understand what l'QX sees when it
picks up an argument. a helpful debugging tool. It
also has the advantage of giving you information at
the time you TEX your file, saving you the steps of
either previewing or printing the .dvi file.

\show will also send the definition of the macro
that it precedes to the . log file, a feature which
you can take advantage of when you are interested
in redefining a Plain l'QX macro. If you write
\show\raggedright, for example, in a test file and
run on that file, the definition of \raggedright
will appear in the . l og file. You can then move
those lines of code from your . log file to your macro
file and you will have saved yourself the trouble of
looking up the command in The m b o o k and
copying it into your file. Now you are ready to
make changes to the original macro.

A related command. \showthe. will give you
the current value of a token list. like \everypar.
Including \showthe\everypar in a test file can
tell you what m sees as the current value of
\everypar at that point in the file. You can also
use \showthe to get the current value of a counter
or dimension. You may want to include a \showthe
temporarily in a macro you are developing, similarly
to \show. as a debugging tool.

Finally, using \message in a conditional while
working on a macro can give you helpful informa-
tion. You could put this code in a headline, for
instance, to be able to see the state of a particular
conditional in the headline.

\headllne=C %
\iftitle

\message{SEES TITLE, WIN)
\else

\message{NO TITLE, LOSE)
\fl.. . I

or include a similar construction in the body of a
macro while you are testing it. When you the
file you can quickly see if you are getting the results
you were expecting.

368 TUGboat, Volume 11 (1990), No. 3-Proceedings of the 1990 Annual Meeting

Getting W n i c a l : Insights into TEX Macro Writing Techniques

Appendix

Code to Alphabetize an Address List

These macros demonstrate many of the techniques
discussed in this paper. The macros process an
existing an address list by taking the first line of
each address, re-ordering the name with last name
first, then turning the name into a control sequence
which is sent to an auxiliary file. The user must
alphabetically sort the auxiliary file. The resulting
sorted file is then input back into the originating
file and the whole address list will be transposed
and printed in alphabetical order.

The user enters \ a l p h a l i s t at the beginning of
an address list, and a blank line and \ enda lpha l i s t
at the end. \ a l p h a l i s t picks up the name, then
makes a macro using the name (last name first)
as the control sequence. This control sequence
is sent to auxiliary file with the same name as
the originating file and with an . a l f extension.
The file filename. a l f must be sorted to produce
filename. srt, using a sort routine on the user's
system. If DOS, write

sort < filename.alf > filename.srt
\ enda lpha l i s t checks to see if filename . srt

exists, and if so, will \ input filename. s r t . The
sorted list of control sequences will produce an
alphabetized address list.

First we name dimensions and counters and set
them to arbitrary sizes.

\ a l p h a l i s t makes every new paragraph start
with the command \look. \obeylines will main-
tain the same line endings as seen on the screen.

First we discuss the definition of \look, then
we will consider the macros used in its definition.

\ look picks up the entire name. It then
defines it as \ t e s t . \ t e s t is placed in \box0
and expanded after \throwaway j r which defines
\fullname. Then \fullname is expanded after
\ t akeapar t to define \nameinrev. \nameinrev is
the name in reverse order; it is used as the name of
a control sequence that defines the entire name and
address. \nameinrev in a csname environment is
also sent t o an auxiliary file so that it can be sorted
alphabetically. Here is the definition of \look:

\obeylines
\everypar={)
\expandafter%
\gdef\csname\nameinrev\endcsnam~%

\vtop to\heightofentry{\parindent=Opt
\vf ill\hsize=\widthof entry
#1

#2
\vf ill))%

\imrnediate\write\alphafile%
{\noexpand\csname\nameinrev%

\noexpand\endcsname)%
\global\everypar={\look))

Now we consider the commands used in the
definition of \look.

To make the last name appear &st in the com-
mand sent to the auxiliary file, we count the number
of parts to the name ("Mr. R. G. Greenberg" has
four parts, for example) and use \ i f case to select
the correct order. After \nameinrev (for 'name in
reverse order') is defined, it will then be used in the
\ look macro to create a control sequence by being
expanded within a csname.

\makedef gives a control sequence name to the
argument of \ takeapart according to the number
of times \ takeapart is invoked:

In order to make an \ i f x comparison, we set

\ takeapart loops until it sees the *: which will
be supplied in the \throwaway j r macro:

TUGboat, Volume 11 (1990): No. 3-Proceedings of the 1990 Annual Meeting

Amy Hendrickson

We want to alphabetize according to the last
name, and not mistakenly use ' Jr.' as the last name.
The first argument ends when \throwawayjr sees a
comma, which would normally occur before a Jr. or
Sr. following a name. The second argument is never
used, which is how Jr. , or Sr., or 111, are thrown
away :

\def\throwawayjr#l, #2{%

\gdef\fullname{#l * 1)

\throwawayjr is used inside a box that is
never used, so we can supply the comma that ends
argument #I, in case there is no comma in the name
given. If a name is used that contains a comma,
that comma delimits the first argument. Since the
extra comma is in a box that is never invoked, the
extra comma is never printed.

Here is code to open an auxiliary file whose
name is the same as the file containing \ a l p h a l i s t ,
but with an . a l f extension:

\newwrite\alphaf ile
\immediate\openout\alphafile=\jobname.alf

Now we have finished describing the commands
needed to define the names and address and to send
their macro names to the auxiliary file, and it is
time to input the sorted list.

\ enda lpha l i s t turns off the \everypar that
was established with \ a l p h a l i s t and inputs the
. srt file if it exists. Since all the definitions precede
\enda lpha l i s t , when the . srt file is brought in
with the csname control sequences in it. each control
sequence will produce its defined name and address:

\def \endalphalist{\egroup

\global\everypar={}
\openin1 \jobname.srt

\ifeofl %
\message{<<Please sort \ jobname. alf

to produce \jobname.srt >>)
\else

\immediate\closeinl

\input \ j obname . srt
\f i)

Example:
\alphalist
George Smith

21 Maple Street
Ogden, Utah 68709

Jacqueline Onassis

Upper East Side
NYC, NY

Mr. W. T. C. Schoenberg, Jr.
Travesty Lane

Culver City, Iowa

This writes the following lines in the file t e s t . srt
after t e s t . a l f is sorted:

which will transpose the original list to print the
names and addresses in alphabetic order.

The complete address list code.
\new count \namenun

\newdimen\heightofentry \heightofentry=.75in
\newdimen\widthofentry \vidthofentry=.3\hsize

\def\alphalist{\bgroup\obeylines
\global\everypar={\look))

{\obeylines

\gdef\look#l^^M#2^^M^^MI\def\test{#l)
\setboxO=\hbox{%

\expandafter\throwawayjr\test, I))
\global\namenum=O

\expandafter\takeapart\fullname

\def \endalphalist{\e~roup

\global\everypar={)
\openin1 \ j obname . srt
\ifeofl \message{<<Please sort \jobname.alf

to produce \jobname.srt >>)
\else

\immediate\closeinl
\input \jobname. srt\f i}

TUGboat, Volume 11 (1990); No. 3-Proceedings of the 1990 Annual Meeting

