
TUGboat, Volume 13 (1992), No. 4

Here is some test input:

\s torecat\%
\cat code' \%=3

\s torecat\%
\cat codec\%=4

\storecat\%
\catcode1\%=5

\restorecat \%
\showthe\catcode'\%
\restorecat%

\showthe\catcode'\%
\restorecat\%
\showthe\catcode'\%

As a whimsical aside, the double assignment to
\toksO can also be done in one statement:

using 15 consecutive \expandaftem.

o Victor Eijkhout
Department of Computer Science
University of Tennessee
104 Ayres Hall
Knoxville, Tennessee 37996, USA
eijkhoutQcs.utk.edu

Z z w : A Macro Package for Books

Paul C. Anagnostopoulos

Introduction

Z z m is a macro package for producing books, jour-
nals, and technical documentation. The primary
advantage of Z z m is its design flexibility, which
makes it well-suited to typesetting books according
to the specifications of a professional book designer.
During the past three years, I and my associates
have used the package to produce approximately
25 books, ranging from the 100-page journal, Sys-
tem Dynamics Revzew, published by John Wiley &
Sons, to the 1400-page book, VMS Internals and
Data Structures, Version 5.2 , published by Digital
Press. In this article I hope to give you a taste of
some of Z z m ' s more interesting technical aspects.
Future articles will delve deeper into the details of
the macros themselves.

I was initiated into the composition and type-
setting business when I agreed to compose my own
book for Digital Press. I had written the book using
I P m , and continued to use it for the composition.
As a software engineer, I found it impossible not
to fall in love with book production: finally, an
endeavor that produces a concrete work of art as
its end product, rather than some ethereal software.
However, I needed more design and page-makeup
flexibility than I P m had to offer, so I undertook to
write my own macro package, which I subsequently
named Z z m , after a rock group from Texas. De-
sign flexibility is of paramount importance when
producing books according to typographers' de-
signs; neither they nor the publishers like to hear
"I'm sorry, that element is too difficult to typeset."

The first book produced with Z z m was a real
struggle. It took about two weeks to create the
design file and produce sample pages. With time, I
refined the package and added many new features.
Each enhancement was a direct result of a design
requirement in a book I had produced, so I believe
Zzm is a practical, realistic macro package. Fur-
thermore, my knowledge of the publishing business
grew with each book. Now when I receive a design
specification I can produce sample pages in less
than a day. The package includes approximately
7,200 lines of m code and various utilities written
in AWK.

The Z z m macro package and manual are
available from the author for a nominal fee. The

macro package may be freely distributed, but the
manual is copyrighted and must be ordered from
the author. Z z m uses significant amounts of

TUGboat, Volume 13 (1992), No. 4

rn memory, so the author recommends a

implementation that has memory areas at
doubled in size.

The Block

w
least

In general, each of Z z m ' s typographic elements is
assembled from a fundamental construct called the
block. A block "contains" the text of the element,
and separates its text from that of surrounding
blocks. Here is an example of a block that produces
a bulleted list:

\listIbullet)

\item This is the first item of the

bulleted list.

\item This is the second item of

the list. It can contain many

lines of text, and even multiple

paragraphs.

\item This is the last item.

\endlist

The \list command begins a list block. The
argument in braces is called the block t ype , which
allows you to specify arbitrarily many list designs.
The text of the list begins after the \list command
and ends at the \endlist command. Each item in
the list is initiated with the \item command.

The list block implementation in the Z z w
macro package provides a "generic List formatter"
that has the capability to produce almost any
style of list. In order to format a particular type
of list for a particular book design, the block
accepts a set of design parameters that directs
its formatting of that list (e.g., the \leftindent
parameter determines the indentation of the list
items). You are responsible for providing the design
parameters for each type of list, placing them in
your book's design file (see next section). The
design file contains a design macro for each type of
block element in the book; the design macro encloses
the specifications of the block's design parameters.

Z z m provides approximately 35 kinds of
blocks, many of which accept a type argument to
allow an unlimited number of variations.

The power of the block lies in the steps that
Z z w takes when it begins and ends a block. When
a block is started, Z z m performs the following
steps:

1. Automatically closes any blocks that are ter-
minated by the new block. For example, the
section block terminates a preceding section
block.

Opens the block scope by starting a group.
This hides any parameter changes made inside
the block, allowing parameters to revert to their
previous values when the block terminates.
Stores the \baselineskip, \parskip, and
\parindent of the enclosing block in three
special parameters, thus making the surround-
ing values available within the new block (after
all, these parameters may be changed within
the block).
Increments a block-specific depth counter.
Invokes the design macro for the block. Design
macros are contained in the design file loaded
by Z z m at the beginning of the run (see
next section). In the case of lists, there is a
separate design macro for each type of list. The
design macro establishes a set of parameters
that controls further processing of the block.
Increments a block-specific sequence counter.
If appropriate, this counter can be used to
number the instances of the block, as might be
done with sections or footnotes.
Resets the sequence counter of any subordinate
blocks. Z z m assumes the existence of certain
block relationships, such as the standard sec-
tion, subsection, and subsubsection hierarchy,
and resets counters accordingly. Furthermore,
Z z m provides the \resetnumber design pa-
rameter on most blocks, with which you can
explicitly specify other sequence counters to be
reset.
Invokes a command (defined in the design
macro) that formats the composite number for
the block. For example, the composite number
for a subsection might be '3.2.5', for a table
'3-8'.
Performs any formatting required at the be-
ginning of the block, including vertical space
above and perhaps a title.

Once the contents of the block are typeset and . -

Z z m encounters the ending command, it performs
these steps:

1. Checks to make sure that the ending command
had a matching starting command.

2. Recursively closes any subordinate blocks that
are still open (e.g., the \endsection com-
mand automatically closes any subsection in
progress).

3. Performs any formatting required at the end of
the block, including vertical space below.

4. Decrements the depth counter.
5 . Closes the block scope, discarding any param-

eter changes made in the block.

TUGboat, Volume 13 (1992), No. 4

The Design File \def \documentdesign 1%

A book's design specification is embodied in the
Z z m design file, which includes a design macro
for each element in the book. The design macro
for a particular element specifies values for various
design parameters that determine the formatting of
the element and control behind-the-scenes activities
such as the generation of marks. In addition,
the design file contains commands that establish
the font table, a matrix that correlates type sizes
and styles. The design file for a typical book
might comprise 50 design macros and 200 font table
commands, with a total of 800 lines.

Most of the elements in a book are realized
in Z z m with a block. Your design file contains
the design macros for all the blocks used in your
book. There are no block designs embedded in
Z z m , only generalized macros that can format a
block given your design parameters. Therefore, as
far as design is concerned, Z z w is a tabula rasa
waiting for your book's design. You must always
include a design macro for a special block called
the document block. The document block design
includes parameters that specify the overall design
of the book, plus parameters that control the look
of the main text paragraphs (e.g., their paragraph
skip and indentation). Figure 1 illustrates the
document block design macro for a book I recently
completed. In addition, the design file might
contain design macros for bulleted lists, numbered
lists, and plain lists. It might contain a macro
for computer program examples in running text,
and another for program examples in figures. And
it might contain macros for chapters, appendixes,
sections, and subsections.

Figure 2 illustrates the bulleted list design
macros from the same book. The name of the main
list macro is \listbulletidesign: 'list' is the
name of the block, 'bullet' is the block type, and
'i' is the depth. Similarly, the name of the sublist
macro is \listbulletiidesign. This naming
scheme accommodates many types, or flavors, of
the same block, and also different designs for
first-, second-, and third-level nested lists. The
first thing the sublist macro does is invoke the
main list macro; this establishes all of the main
list design parameters. Then the sublist macro
redefines only those parameters that are different
in the sublist design. Design macros can be
arbitrarily interdefined in this manner. Another
common reason for defining one block in terms
of another occurs when you want a design for
numbered lists. The first-level numbered list macro

\setf lag\cropmarks \true

\eveninnermargin = lin

\evenlefttextmargin = 4pc

\evenrighttextmargin = Opt

\footerheight = 26pt

\headerheight = 17.5pt

\headmargin = .5625in

\hoffset = -.25in ,

\maxbottomcolumnfloats = 3

\maxtopcolumnfloats = 3

\oddinnermargin = .646in

\oddlefttextmargin = 4pc

\oddrighttextmargin = Opt

\parindent = 1Opt

\parskip = Opt

\setflag\PostScriptoutput = \true

\textareaheight = 526.5pt

\textareawidth = 28pc

\topskip = 13.5pt

\trimheight = 9.25in

\trimwidth = 7in

\voffset = -.125in)

Figure 1

can invoke the first-level bulleted list macro, thereby
sharing common parameters such as \aboveskip,
\belowskip, and \bodyf ont.

Careful page composition often requires that
individual blocks be adjusted. The \with command
is used as a prefix on a block command to alter
one or more design parameters for that particular
instance of the block. This is how you can change
the space above and below a list:

\with(\aboveskip=18pt plus 1.2pt

\belowskip=\aboveskip)

\listIbullet)

Z z m performs \with assignments after it invokes
the block's design macro.

The Font Table

One of my primary goals in creating ZzT@ was
to allow complete flexibility in selecting fonts. In

fact, I have never typeset a book using Computer
Modern Roman. (I have used Computer Modern
Typewriter, because many book designers realize it
is better than other available monospaced fonts.)
Z z m employs a font table to select fonts. You

can think of the font table as a matrix with rows
corresponding to type sizes and columns to type
styles. Figure 3 illustrates a simple font table.

Three steps are required to set up the font
table:

500 TUGboat, Volume 13 (1992), No. 4

\def \listbulletidesign C%
\aboveskip = 21pt plus 1.6pt

minus 3.1pt

\belowskip = \aboveskip

\bodyfont = 0% Same as surrounding.
\interitemskip = 15pt

\def \labelformat ##i{##l\hfil)%

\labelshift = -\enclosingparindent

\def \labeltext C%

\centeronxheightC\bul .)I%
\labelwidth = \enclosingparindent

\left indent = \labelwidth

\parindent = Opt

\parskip = 6pt

\rightindent = Opt

\width = \naturalwidth)

\def \listbulletiidesign {%
\listbulletidesign

\aboveskip = 18.25pt plus lpt

minus 2.7pt

\belowskip = \aboveskip

\labelshift = -8pt

\def \labeltext <--I%
\labelwidth = 8pt

\leftindent = \labelwidth)

Figure 2

Type Sty le

Type size \rm \it \dbf

\chapsize - - 24' Optima
Bold

\aheadsize - - 12' Optima
Bold

\textsize 10' Nofret 10' Nofret -

Regular Italic

\ftntsize 7' Nofret 7' Nofret -

Regular Italic
Figure 3

1. Define any type styles you need in addition to
the built-in ones (Roman, math italic, math
symbol, math extended symbol, Postscript
symbol, italic, bold, bold italic, and type-
writer). The definition includes a specification
of the character set encoding used by the style
(e.g., Roman vs. italic vs. monospace). Know-
ing the encoding, Zzm can, for example,
automatically insert an italic correction after
italic text.

2. Define all the fonts you need.
3. Define the logical type sizes you need (there are

no built-in ones). The size definition includes

\definefont(\twentyfourdrm)Css at 24pt)

\definefont{\twentyfourdbf){ssb at 24pt)

\definefont{\eighteendrm)(ss at 18pt)

\definefont{\ninetqtt){cmttlO at 9.75pt)

\definefonti\nineqrm)<sr at 9.25pt)

\definefont(\nineqmit){cmmiiO at 9.25pt)

\definefont<\nineqmsy){cmsylO at 9.25pt)

\definefont{\nineqmex){cmexlO at 9.25pt)

\def inef ont{\nineqit)Csri at 9.25pt)

\definefont{\nineqsb)<srsb at 9.25pt)

\definefont{\nineqsbi){srsbi at 9.25pt)

\def inef ontC\sevendsr at 7pt)

\definefont(\sevenmit){cmmilO at 7pt)

\definefont~\sevenmsy)IcmsylO at 7pt)

\definefont{\sevenit){sri at 7pt)

\definetypesize{\textsize)(9.25/13.5)

\setfontrnath{\textsize)~\rm~C\nineq~d

C\sevenrm)C\fiverm)

\setfontmath~\textsize)~\mit)~\nineqmit~

C\sevenmit)(\fivemit3

\setfontmath(\textsize)I\msy)C\nineqmsy~

C\sevenmsy3C\fivemsy)

\setfontmath(\textsize)~\mex)~\nineqmex~

C\nineqmex)C\nineqmex)

\setfontmath{\textsize)(\it)C\nineqit)

C\sevenit)C\f iveit)

\setfontC\textsize)C\tt)C\ninetqtt3

\setfont(\textsize){\sb)C\nineqsb)

\setfont{\textsize)C\sbi)C\nineqsbi)

\setfont{\textsize){\bul)C\eighteendrm)

Figure 4

the baseline-to-baseline distance. After each
size definition, set the fonts for those styles
that appear in that size. Styles that are used
in math require three fonts (text, script, and
scriptscript); other styles require one font.

Figure 4 shows a portion of the font table for a
book.

TUGboat, Volume 13 (1992), No. 4

\document
\copyident{\sevenm Merusi f i r s t pages)
\printar t{\ t rue)

\enddocument

Figure 5

In addition to the main font table, Z z m
provides a second table that specifies style relation-
ships. There is a built-in relationship called \emph
that you use to produce emphasis. The relationship
table specifies that Roman is emphasized with italic,
and vice versa. Furthermore, bold is emphasized
with bold italic, and vice versa. You can add
additional entries for emphasis, and invent your
own relationships such as \smallcaps, \newtem,
or \varname.

The Division

Any book longer than about 20 pages is best broken
into divisions, each of which typically contains the
material in one chapter. The entire book is repre-
sented by a root file, and the root file incorporates
each division with a \d iv is ion command. Figure 5
shows a small root file. You can use the \ se t -
d iv i s ions command to select specific divisions for
processing.

Associated with the root file and each division
file is a division cross-reference file that contains
the following information:

An entry for each title that should appear in a
table of contents, list of figures, list of tables,
or a similar listing of other floating elements.
Z z m allows you to define additional types

of floating elements (e.g . , computer program
code) and produce a listing of those elements.
An entry for each symbolic tag that is referred
to elsewhere in the book.
An entry for each endnote.
A single snapshot at the end. The snap-
shot contains the division's final page number,
chapter number, section number, and so forth.

At the end of a run, Z z m combines all the root
and division cross-reference files into one composite
cross-reference file. The composite file is considered
the master list of cross-reference information.

At the beginning of a run, Z z m :

1. Loads the composite cross-reference file to ob-
tain the symbolic cross-reference tags. (All

tags in a book must be unique, so if you are
producing a book from multiple independent
authors, you may have to alter tags during
conversion to make them unique.)

2. Starts a cross-reference file for the root file.

For each division, Z z m :

1. Adds an entry to the root cross-reference file
that names the division cross-reference file.

2. Creates the division cross-reference file.
3. Writes table of contents entries, cross-reference

tags, and endnotes to the division file.
4. Finishes the division file with the snapshot of

that division.

At the end of a successful run, Z z m :

1. Closes the root cross-reference file.
2. Combines the root and division cross-reference

files into one composite cross-reference file.

Whenever Z z m needs cross-reference infor-
mation, it consults the composite cross-reference
file. Thus, when you send a book to someone else
for processing, you send only the source files

and the single composite file. If encounters
an error processing your book, and you terminate
the run, that division's cross-reference file is invalid,
but the composite file still accurately reflects the
previous run. So when you reprocess the book to
correct the error, the cross-reference information is
still intact. The second reprocessing run behaves
just like the first run.

If the \ se td iv is ions command excludes a
division, Z z w does not process it. Instead, it

searches the composite cross-reference file for the
division's snapshot and updates important counters
such as the page number and chapter number so
they reflect the state of affairs at the end of the
division. In this way, the next division processed
will appear to be in the correct place in the book.

TUGboat, Volume 13 (1992), No. 4

Z z w writes "moving arguments", such as
titles, into the cross-reference files without expan-
sion, so that no "protect" mechanism is needed.
A special command, \ a d j u s t t i t l e , allows you to
customize the format of a title where it appears in
the main text, a table of contents, a running head,
or a textual cross-reference. An adjustment can be
as simple as a line break or as complicated as a
footnote.

Vertical Spacing

One of the most difficult tasks I encountered in
creating Z z W was to ensure consistent vertical
space between elements. If the book designer
requests 24 points base-to-base above an A-head
and 16 points below, then Z z W must produce
that much space, regardless of the element above
the A-head, the size of the A-head, or whether
there is text or a B-head immediately below it.
Allowing some stretch and shrink above a heading
does not diminish the need for consistent nominal
space. I solved the problem with the vertical

spacing env i ronment (not to be confused with a
I P W environment).

Z z w provides six commands to produce ver-
tical space:

\bbskipabove. This command specifies a
certain base-to-base space between the previous
element and the next. If two or more of these
commands appear in a row, the space from the
first one prevails.
\bbskipbelow. This command specifies a
certain base-to-base space between the previous
element and the next. This command is not
used to produce vertical space at the end of a
block (see next item). If two or more of these
commands appear in a row, the space from the
last one prevails.
\bbskipbelowblock. This command is equiv-
alent to \bbskipbelow, but must be used to
produce vertical space at the end of a block. It
compensates for any change in the \baseline-
sk ip and \parskip values that might occur
after the block terminates.
\bbskipbelowblockpar. This command per-
forms the same functions as \bbskipbelow-
block, but also checks whether the next el-
ement begins a new paragraph. If not, it
ensures that the paragraph continuation is not
indented.
\vsink. This command specifies a certain
base-to-base distance between the top of the

type page and the next element. You can use

it more than once on a single page, usually in
front matter to format the half title or full title

page.
\vspace. This command adds additional ver-
tical space between two elements that is inde-
pendent of any other explicit or implicit base-
to-base space between those elements. Thus it
replaces \vskip.

The first four commands also accept an argument
that specifies the page-break penalty inserted above
the vertical space. If a \bbskipabove command
follows one of the \bbskipbelow commands, the
maximum of the two spaces is used. If the reverse
occurs, an error is signaled.

In order for vertical space to be consistent, you
must use these six commands wherever you request
explicit vertical space. However, most vertical space
is produced implicitly at the beginning and end of
a block. Any block that produces vertical space
accepts the \aboveskip and \belowskip design
parameters, which specify the space above and
below the block, respectively. The macros that
implement the block use \bbskipabove to produce
the space above the block, and \bbskipbelowblock
or \bbskipbelowblockpar to produce the space
below. Therefore, you usually only need \vsink
to format pages such as title pages, or \vspace to
force more or less space between certain elements
for aesthetic purposes. You occasionally have to
use \bbskipabove or \bbskipbelow to obtain the
correct base-to-base distance between two elements
that are not blocks (e.g., a title and subtitle).

The vertical spacing environment is maintained
as a stack of structures, for reasons explained below.
The structure at each level of the stack includes the
following data items:

The type of the previous vertical space: none;
inter-paragraph space specified by \parskip;
space above, produced by \bbskipabove; or
space below, produced by \bbskipbelow and
Fiends.
The page-break penalty associated with the
previous vertical space.
The base-to-base space requested for the previ-
ous vertical space.
The actual glue Z z w inserted for the previous
vertical space.

By carefully inspecting and maintaining these items,
the vertical spacing commands consistently produce
the correct amount of space. The environment is on
a stack because vertical spacing within some blocks,
such as floating figures, is independent of the vertical
spacing in progress in the surrounding text. When a

TUGboat, Volume 13 (1992), No. 4 503

floating figure begins, it pushes the current vertical
spacing environment on the stack, and reinitializes
the environment. The vertical spacing within the
figure thus begins afresh, unaffected by the space
above the figure. When the figure block terminates,
it pops the stack. Each level of the stack is simply
implemented as a numbered definition containing
the saved values of the environment items. The
items for the top level are in global variables.

The Index

The only difficulty about typesetting an index from
a prepared file of entries is producing carry-over lines
when a first- or second-level entry continues onto a
new page. However, creating that file of entries from
indexing commands in the book is a challenge. I am
rarely asked to do it, because most authors do not
index their books, and many publishers prefer not
to use authors' indexes. Nevertheless, to support
those publishers and authors who want to generate
an index automatically, I developed facilities to
produce an index entry fiIe from commands in the
text.

To produce an index you must first define the
required index locators. An index locator is a
particular item of information associated with an
entry. The most common index locator is a page
number or page range. Another common locator is
the "see also" locator that refers to another index
entry. When you define a locator, you specify the
following information:

The name of the locator.

A set of attributes. The \page attribute speci-
fies that a page or range of pages is associated
with the locator. The \text attribute specifies
that arbitrary text is associated with it (e.g.,
another index heading).
The sorting precedence of the locator. For
example, "see also" locators have a lower
precedence than page locators, so they appear
after the page numbers in an entry.
The prefix text. The prefix text for a "see also"
entry in English is "See also".
A template that specifies how to format a single
page number or the text of the locator.
A template that specifies how to format a page
range.

Z z W predefines the following locators, in
order of precedence: the null locator (for entries

the "see also" locator, and the "consult" locator
(for referring to other books).

A locator definition creates one or more macros
you can use throughout a book to produce index
entries. If the locator is named command and has the
\page attribute, then \xcornmand produces a locator
with the current page number. The \xcommand-
begin and \xcommandend macros produce locators
that begin and end a page range, respectively.
Each macro accepts one, two, or three arguments
designating up to three levels of index headings.

To prepare an index entry file, you include the
\prepareindex command in the root file. This

command specifies an index type, thereby allowing
you to have more than one index in a book (e.g.,
a main index, an index of commands, and an
index of variables). It also specifies the name of a
index preparation file that receives all of the control
information necessary to prepare an index: root file
name, index type, list of locators included in this
index, and the definitions of those locators. The
\prepare index command also activates indexing
so that Z z m attends to indexing commands and
writes the entries into the raw index files. Without
a \prepareindex command, index entries in source
files are ignored. There is one raw index file for
the root and one file for each division (as with
cross-reference files).

After a Z z m run, three steps are required to
produce the index described by one particular index
preparation file:

1. An AWK program consolidates all the locators
in the raw index files into one composite index
file. Prefixed to each record is a six-part
key that includes the headings (canonicalized
for sorting), precedence, segment number, and
page number. The segment number is used to
separate front matter pages from main body
pages. This step discards any locators that
should not be included in the index.

2. The composite index file is sorted.
3. Another AWK program processes the sorted

index file and creates the source file for

the index. All of the locators for one entry are
merged into a paragraph, using the prefix text,
single-page template, and page-range template
specified with each locator definition. The

resulting file is suitable for inclusion in an
\index block anywhere in the book.

without any locators), the "see" locator, the page
nurnber/range locator, a locator for each type of

Conversion To and From Zz'QiJC
- - -

floating object (for referring to tables, figures, etc.), My colleagues and I have typeset books from authors
who used many different document preparation

504 TUGboat, Volume 13 (1992), No. 4

systems, including Microsoft Word, troff. VAX
DOCUMENT, DECwrite, m. and @?]EX. Not
only are there many document systems, but the
degree to which an author uses the features of any
given system varies greatly, as does the author's
level of consistency. To facilitate the conversion
of these books to Z z m , I developed a table-
driven translator called ZzTran. Because ZzTran is
based on AWK, you can specify regular expression
patterns that match tags in the source language.
For each pattern you specify how to generate the
corresponding tag in the target language (usually

Z z w) , so that a translation file consists of a
table of patterns and their replacements, along with
auxiliary AWK functions you write to help with the
more complicated tag translations.

To translate files, ZzTran runs an AWK pro-
gram that "compiles" the translation table into a
pure AWK program. The compiler incorporates
both driver functions that control the translation
process and a standard library of utility functions
(e.g., replace 0 to replace a tag, keep0 to main-
tain a tag as is). ZzTran then runs the resulting
AWK program, which reads a source file and pro-
duces the corresponding target file. ZzTran can
usually accomplish about 95% of the translation
automatically, so that very little must be done by
hand.

Occasionally, after typesetting, I am asked to
translate the final Z z m files back to the author's
original document preparation system. This is
usually simple because the tags in Z z m files
are more specific and complete than those in files
acceptable t o the author's system. The reverse
translation is a matter of converting some Z z w
tags to the original coding system and discarding
the rest.

Production Methodology

A commercial book is created by a team of people.
When my colleagues and I produce a book with
Z z w we usually break the work down as follows.
I am responsible for converting the author's files
to Z z w , because this often involves some pro-
gramming with ZzTran. I am also responsible for
creating the design file according to the book de-
signer's specifications, and producing sample pages
that illustrate the design. Once the design is ac-
cepted by the publisher and author, I deliver the
design file and the Z z m source files to a person
who will be responsible for the composition of the
book. The compositor enters copyediting changes,
produces a rough set of first pages (galleys), enters

proofreading changes, produces an almost-complete
set of the second pages, and produces the final
pages for reproduction proof or film.

If you are writing and producing your own
book, you may be responsible for all of the steps
outlined above. In either case, care is required
to keep the master files up-to-date, and to ensure
that the notations on paper manuscripts marked
by copyeditors and proofkeaders are incorporated
back into the files completely and accurately. The
biggest dilemma concerns automatic indexing: how
can the compositor work on the files while the
indexer "owns" them to enter index entries? In
a confined computer environment, some type of
source control system can be used. But, in the real
world of far-and-wide subcontractors, I have not
devised an acceptable solution. We usually have
the indexer put the entries in a text file, convert it
to Z z w , and typeset it independently of the rest
of the book.

Future Work

Although I have been developing Z z m for three
years, there is still significant work to be done. My
to-do list includes the following:

The multicolumn support must be redesigned.
At present, Z z m produces multicolumn pages
by treating each column as a separate logical
page. This allows single-column footnotes and
floating figures, but makes it difficult to bal-
ance the columns on the final page, particularly
when switching back to single column format
on the same page. A hybrid scheme is re-
quired, where each column is a separate logical
page, but, when necessary, all columns can be
collected and treated as one page.
While the current scheme for horizontal place-
ment of elements is flexible, its use is not
intuitive. It is particularly difficult to produce
atypical kinds of centering, such as centering
text in an area other than the normal text
measure. I want to implement a new technique
involving four parameters: \hshif t , to control
horizontal shift; \measure, to control the text
measure; \ f lush, to control whether text is
flush left, flush right, or centered; and \width.
to specify the width on which the flushing is
performed.
I want to complete the work necessary to make
Z z m independent of Plain m , yet allow
them to coexist. You will be able to load
Z z m into TJ$ with or without the Plain w
macros.

TUGboat, Volume 13 (1992), No. 4 505

e The Zz'IjEX manual is incomplete. It is cur-
rently about 220 pages, and will expand to
approximately 400 pages.

No software is ever finished, and I will continue
to enhance Z z w . Nonetheless, I know that Donald
Knuth's '.IJEX is capable of producing truly beautiful
books.

o Paul C. Anagnostopoulos
Windfall Software
433 Rutland Street
Carlisle, MA 01741
greek@genome.wi.edu

The \noname macros -a technical report

Jonathan Fine

Abstract

The \noname package provides a powerful envi-
ronment for writing macros. Its use makes
macros easier to read, easier to write, and easier
to document. It allows ready access to powerful
control macros. It allows diagnostic and other code
to be tagged for conditional inclusion. The \noname

package is fully compatible with existing macros.
Here are two major features. It allows easy

access to arbitary character tokens. Lines that
do not begin with a white space character are
comments, and are ignored.

The intention has been to provide the pro-
ductive features that users of other programming
languages take for granted. This article provides an
outline of the history, design and implementation of
the \noname package.

Acknowledgements

I would like to thank Nelson Beebe, and particularly
Michael Downes, for their careful comments on an
earlier version of this article.

1 Introduction

The \noname package grew out of work the author
was doing two years ago. The goal was to write
macros, for setting verbatim code, that would
set source in a \tt font, and comments in a
proportional font. This effect was to be achieved
without additional mark up of the input file. Other

refinements over the usual verbatim listing for
source code were also desired.

In the course of this programming, extensive
access to characters with \catcodes other than
those usually given was desired. This proved to
be a stumbling block for this project, which still
awaits completion. Various programming tricks
were introduced. The result of systematically
developing these devices is the \noname macros.
Although they have now reached the stage of being
useful, there are developments being considered that
will further increase their power and usefulness.

The physical activity of erecting a building
commences with the digging of a hole, that will
become the foundations that support the planned
structure. The larger the building, the deeper the
hole. The \noname package is intended to provide
secure foundations for large scale collections of TEX
macros.

2 Examples

Here is a line of code from p la in . t ex . It supports
the \newif construction. It creates a control
sequence \ i f @ that must be followed by other
characters 'i' and ' f ' with catcode other, i.e. 12.

Such funny letters arise from use of \ s t r ing .

{\uccoder l=' i \uccoder2='f

\uppercase{\gdef\if@12{}}}

(The purpose of \ i f @ is to extract the string
foo from \ i f foo , which is then used to construct
\f oof a l s e and \f ootrue. The macro \ i f @ is also
intended to give an error if the argument to \newif

is not of the form \ i f . . .).
Here is the same macro defined using \noname.

\def \ i f @ ' i ' f (1

The right quote symbol " ' is an escape character
that serves to produce a character with catcode
other, whose character code is given by the following
alphabetic constant.

Here is another example. The \noname macro
definition

\def \spaces{ 1

defines \spaces to be a macro whose replacement
text is five ordinary space tokens. (Ordinarily,
special tricks are required to get a space after a
control word or another space). Finally,

\def !\-^M I \par 1

will in \noname define active carriage return to
expand to \par.

