
TUGboat, Volume 17 (1996), No. 1 35

Book review: README.1ST: SGML for Writers
and Editors

Lynne A. Price

Ronald C. Turner, Timothy A. Douglass, and Au-
drey J. Turner, README.1ST: SGML for Writers
and Editors. Prentice-Hall, Upper Saddle River, NJ,
1996, 241 pages + diskette, ISBN 0-13-432717-9.

The Standard Generalized Markup Language (SGML)
is an increasingly popular foundation for text pro-
cessing applications such as editing, formatting, ar-
chiving, and interchanging documents as well as man-
aging document databases. While the most widely
known application of SGML is HTML, the Hyper-
text Markup Language used to prepare documents
for the Internet’s World Wide Web, SGML predates
the Web and is used in many other contexts as well.
U.S. government agencies that use SGML include
the Internal Revenue Service and the Department of
Defense, while industry-wide applications of SGML

exist in the aircraft, telecommunications, semicon-
ductor, and computing communities.

The essence of SGML is that a document con-
sists of a hierarchy of structural elements, each con-
taining a sequence of other elements or text — a book
consists of a title followed by a sequence of chap-
ters; each chapter has a title followed by paragraphs
that might be interspersed with itemized lists, fig-
ures, and tables; the paragraphs contain text, em-
phasized phrases, and new terms. The author using
an SGML-based word processor, even a what-you-
see-is-what-you-get word processor, is not required
to specify the format of each element in the docu-
ment; formatting is applied automatically based on
the context in which the element occurs. Writing
with SGML thus resembles using a well-controlled
TEX macro package in which the only control se-
quences an author uses are those that indicate the
start and end of elements. In fact, using TEX and
SGML together is common. This reviewer wrote
about the combination in the July 1987 issue of
TUGboat and spoke about using TEX as a back-end
in an SGML-based document production system at
the TEX Users Group Annual Meeting in 1988.

SGML does not define the possible elements that
can occur in a class of documents. Instead, each
SGML document includes a document type defini-
tion or DTD that defines the possible elements that
can occur, as well as the contexts in which each ele-
ment is permitted. The DTD is followed by a docu-
ment instance that contains data and markup that
indicates how the document instance conforms to
the DTD; the bulk of this markup consists of tags

indicating the start and end of structural elements.
The DTD lets software report errors if information
is missing or out of place in the document instance.
SGML software can also anticipate required elements
to guide the user in creating document instances
that conform to the DTD.

SGML is defined in International Standard
ISO 8879:1986 Information Processing — Text and
office systems — Standard Generalized Markup Lan-
guage (SGML) and its amendment, ISO 8879:1986/
A1:1988. When this standard was originally pub-
lished in 1986, its terse and formal prose was the
only source of information on SGML. In the years
since, however, several ways to learn about SGML

have evolved. There are SGML conferences and
tutorials. Both public and commercial SGML soft-
ware is now available. Several books describing
SGML have been written. Prentice-Hall is now
publishing a series of books, edited by Charles
Goldfarb, editor of ISO 8879, on open information
management. These books deal with managing
information — particularly textual data — so that it
can be processed by software beyond that planned
when the data were created. SGML is a key part
of this strategy. In addition to tutorials on SGML

and related standards for the technical reader,
the series addresses business-related topics such
as justification for open information management
and commerce in electronic information. The first
volume in the series to appear is README.1ST:
SGML for Writers and Editors by Ronald C. Turner,
Timothy A. Douglass, and Audrey J. Turner.

In his foreword to this book, Goldfarb observes
it is “easy and fun to read.” This reviewer agrees.
It is a fun book. It is well written and presents ideas
in a logical progression. It is not, however, a text-
book on SGML. Rather, it is a textbook on informa-
tion management. It presents the motivation, phi-
losophy, and history that led to the development of
SGML. It describes the value of standards, the ben-
efits of open-ended document processing, and the
advantages of formal tagging. In the process, high-
lights of SGML are introduced where appropriate in
the context of the ongoing discussion.

The book begins with background, discussing
writing with standards, the SGML paradigm, and
features and benefits of the language. The topic
next switches to document analysis, as the authors
explore the structure of a short sample document to
determine the structural elements that occur within
it and the contexts in which those elements occur.
After a discussion of document type definitions and
their use, this analysis is then used to build a DTD



36 TUGboat, Volume 17 (1996), No. 1

which the authors call WAE for “Writers and Edi-
tors”. The next several chapters present major as-
pects of DTDs, gradually extending the WAE DTD

as new concepts are introduced. The ideas of el-
ement declarations, entities, attributes, hypertext,
and marked sections are gradually developed. The
attribute chapter, for instance, gives several practi-
cal examples of attributes, instead of the one or two
quick examples given in some other expositions of
SGML.

Once this SGML foundation is established, the
authors test it by walking the reader through a read-
ing of a more complex DTD. The one they select
is the publicly available DocBook DTD, intended
for software documentation. The book concludes
with a discussion of HTML as an SGML applica-
tion and a quick introduction to hypermedia appli-
cations of SGML using another standard, the Hy-
permedia/Time-based Structuring Language or Hy-
Time (ISO/IEC 10744:1992). Several appendices in-
clude the SGML markup for one chapter in the book
and the DTD used to produce it. A diskette ac-
companying the book provides the DOS user with
several sample SGML documents, a viewer for in-
specting formatted versions of WAE documents, an
SGML parser, the DocBook and HTML DTDs, and
a list of Web sites with SGML information.

Much of the material in the book could be used
to stimulate the kind of invigorating debate that
sometimes occurs around a cafeteria lunch table.
For example, the authors claim that the advent of
desktop publishing was not a true paradigm shift,
because users of desktop publishing systems think
of their task as the production of pages, just as did
earlier authors. They believe that use of SGML is
a more fundamental change, because its users think
differently about the deliverable they are produc-
ing — it is an information product that may or may
not be realized on physical pages. While classify-
ing the profundity of evolving technology is clearly
subjective, the authors overlook an important char-
acteristic of computerized text processing. Before
desktop publishing, an author expected his work to
be typeset by a printer — someone else had to be
involved in making the work available to its audi-
ence. One of the important differences enabled by
current tools is the ability of the author to produce
camera-ready copy. Furthermore, the authors point
out that SGML divorces a document from processes
performed upon it. They neglect to point out that
editing a document is a process. While observing
that formatting a document for printing or screen
display can be completely independent of the string
of characters a writer sees while editing, they fail to

admit that a tagged character file is formatted, too.
They miss the opportunity to discuss what-you-see-
is-what-you-get editing of SGML documents. Does
reading markup affect an author’s perception of his
own words? They even recommend against indent-
ing SGML markup to indicate the hierarchy of ele-
ments in a document because of possible misinter-
pretation of the resulting white space. Instead, they
should have suggested that DTD developers consider
the markup style of their users and that SGML for-
matting applications discard extra space and tab
characters.

The book stresses the benefits of standardized
DTDs. All the DTDs that appear in the book are
very general. This emphasis eliminates one of the
advantages of SGML. A DTD can enforce many of
an organization’s writing standards, requiring, for
instance, that at least one introductory paragraph
precede the first figure in a section, or that there
be at least two sections at each level of subdivision.
The WAE DTD is so flexible that it does not even
require that a manual have a title. While this ap-
proach is a perfectly legitimate application of SGML,
the book would have been improved by illustrating
a more restrictive DTD philosophy as well. Naming
style is another area of personal preference long de-
bated in programming circles. The WAE DTD uses
abbreviated names that the reader must repeatedly
translate: ti for title, au for author, and so forth.
Ironically, the DTD the authors used to produce the
book, provided in Appendix C, includes more com-
plete names. There is no mention of recursive ele-
ment types. A subdivision of a section is a subsec-
tion (or an ssec) and not also a section. There are
valid reasons for both approaches, and a richer pre-
sentation would have at least illustrated both strate-
gies.

Minor improvements could be made in a hand-
ful of other areas. The authors refer several times
to markup minimization, a general term that refers
to several optional SGML conventions for abbrevi-
ating markup. One form of markup minimization
is tag omission in which the markup that indicates
the start or end of an element is omitted. The au-
thors refer several times to this form of minimization
without explaining any of the others. Furthermore,
discussion of the “omitted tag minimization param-
eter” suggests that this construct allows tags to be
omitted. It should have been made very clear that
tags can only be omitted when the DTD provides
for their omission and the document instance is such
that an SGML parser, following a rigorously defined
algorithm, can recognize the start or end of the ele-
ment without the tags.



TUGboat, Volume 17 (1996), No. 1 37

Better comments could be used throughout the
sample DTDs. The WAE DTD contains only a few
comments that label major syntactic components.
There are no comments explaining the abbreviations
used in the short names or the intended semantics
of the declared elements. There are no comments at
all in the DTD used to markup the sample chapter.
Finally, a windows-oriented interface to the mate-
rial on the diskette would make these samples more
accessible to the intended nontechnical end users.

Despite these criticisms, or perhaps because the
subject matter encourages the SGML-knowledgeable
reader to be aware of stylistic preferences, the book
is of interest to both SGML novices and to experi-
enced practitioners. Should README.1ST be read
first? That depends on the audience. It is intended
for nontechnical end users: people who will be writ-
ing (and perhaps reading) document instances, who
may read DTDs, but who will not be writing them.
As the title suggests, the level of detail is directed
at writers and editors. The book is not a tuto-
rial for DTD developers, implementors of SGML ap-
plications, programmers who want to write SGML

parsers, TEX macro writers, or even writers and edi-
tors who have already grasped the philosophy under-
lying SGML. Readers in the latter group will prefer
to learn SGML from a text that presents SGML detail
more directly. Once they are familiar with SGML

syntax, however, they may well enjoy the perspec-
tive of README.1ST.

� Lynne A. Price
Text Structure Consulting
lprice@ix.netcom.com


