
Computer Modern Typefaces as the Multiple Master Fonts

A.S. Berdnikov
Institute of Analytical Instrumentation
Rizsky pr. 26, 198103 St.Petersburg, Russia
berd@ianin.spb.su

O.A. Grineva
Institute of Analytical Instrumentation
Rizsky pr. 26, 198103 St.Petersburg, Russia
olga@ianin.spb.su

Introduction

Several years ago Adobe Inc. announced its new
Multiple Master font format which enabled one to
vary smoothly the font characteristics (say, weight
from light to black, width from condensed to ex-
panded, etc.) and create a unique font which suites
the User’s demands. Like many other “new” inven-
tions in computer-assisted typography,1 the roots of
this idea can be found inside TEX — namely, in the
Computer Modern font family created by D. Knuth
in 1977 – 1985 [1]. These fonts are parametrized
using 62 (!!!) parameters most of which are in-
dependent. It can be seen easily that it exceeds
the flexibility of any multiple master font which has
been created up to now or even will be created by
somebody in future.

The METAFONT source code and the parame-
ters for the Computer Modern series were created
using the advice of such professional font designers
as Hermann Zapf, Matthew Carter, Charles Bigelow
and others. The METAFONT source code is designed
so that the parameter files are separated from the
main source code; all the parameters together with
the relations between them are totally documented
[1], and the font variations (provided that they have
a name different from the original CM fonts) are
encouraged by the author. The parametric repre-
sentation of the parameters for canonical Computer
Modern typefaces created by John Sauter and Karl
Berry (sauter fonts [2]), and, on a different basis,
by Jörg Knappen and Norbert Schwarz in European
Computer Modern typefaces [3], enables one to vary
smoothly the font size in a wide range without
loosing high quality of the resulting fonts. All these
facts provide the basis of the LATEX macros mff.sty,

1 For example, Microsoft Word 6.0 was announced as the
first program which enables to mark some place in the text
by a special marker and then to refer to its position in a form:
“see page . . . ”.

which enables one to treat Computer Modern type-
faces like multiple master fonts.

The mff.sty macros follow the ideas imple-
mented in the MFPIC package and allows specifica-
tion of new fonts dynamically within a LATEX docu-
ment without dealing with the details of METAFONT
programming and without manual manipulations of
each of 62 parameters used in METAFONT source
files. Like MFPIC, the first pass of LATEX creates
the METAFONT source file (substituting font dummy
instead of the user-defined font), the METAFONT

source file is processed by METAFONT, and at the
second pass the generated font is used to format the
document properly.

The user can vary the font shape smoothly
between CMR, CMBX, CMSL, CMSS, CMTT and
CMFF font families, specify the weight, width, height
and contrast of the output font independently, and in
addition he/she can play with the character charac-
teristics so that the resulting output does not look
like the canonical Computer Modern typefaces at
all. Although originally the package was created
for internal purposes to facilitate the investigation
of the possibilities hidden inside Computer Modern
source code, it can be useful for professional typo-
graphic purposes too.

Font series with the arbitrary design size

Suppose that there is a smooth approximation for
Computer Modern Roman (CMR) which enables
one to calculate the METAFONT font parameters
for an arbitrtary design size even with weak TEX
arithmetical capabilities. The desired font size is
specified as the input parameter, all the internal
calculations of the font parameters are performed
by TEX, and the result is a METAFONT ready-to-
run font header file for a new font. When this new
font header file is processed by METAFONT, it can

TUGboat, 17, Number 2 — Proceedings of the 1996 Annual Meeting 115



A.S. Berdnikov and O.A. Grineva

be used in TEX documents like other generic TEX
fonts.

This operation is performed by the command

\FontMFF[fntscaled]{fntcmd}{filename}{size}

The command fntcmd will switch to the desired font
as is done by the LATEX commands \bf, \sl, \sf,
etc. The file filename.mf will contain the META-
FONT source for a new font (please, never use the
font name which is already used in CM or DC or
some other standard fonts!). The parameter size
specifies the design size of the new font, and the
optional parameter fntscaled specifies the additional
scaling of this font in LATEX document. Using the
commands described in the following sections the
user can vary the shape of the font characters in a
wide range.

It is interesting to compare the possibilities
of this simplest form of parametrization of CMR
fonts and the PostScript vector fonts. The ne-
arly-proportional changing of the font dimensions
with respect to the magnification parameter is the
analog of the linear scaling of the PostScript fonts.
The non-linear relationship of the inter-character
spacing from the font size imitates the tracking
mechanism implemented in PostScript fonts (which
is not taken into account in most cases by text
processors). The fact that the ratio height/width
is a non-constant (and non-linear) function of the
font size is a serious advantage of these pseudo-
CMR fonts in comparison with the linearly scaled
PostScript fonts since it enables one to make the
font proportions more suitable for the human eye (it
is well known that for good eye recognition, small
letters are to be more expanded and have greater
inter-character spacing).

There are at least two ready-to-use font ap-
proximations available from CTAN. The first one
is the METAFONT sauter font package [2]. It
uses the smooth functions composed from constant,
linear and quadratic pieces which are constructed
so that for canonical font sizes they produce nearly
the same *.mf files as the ones used by the original
Computer Modern typefaces. Although the latest
version of sauter is dated 1992, and in 1995 the
parameters of Computer Modern fonts were again
slightly changed, it seems still to be the most reliable
source of the fonts with intermediate design sizes.

The other approximation is realized in dc and
tc fonts by by Jörg Knappen and Norbert Schwarz
[3]. It is based on cubic splines — Lagrange cubic
splines or canonical cubic splines — using the pa-
rameters of Computer Modern typefaces as the base
points. Although generally piecewise-cubic func-

0 A B C a b c
Q R S q r s

1/3 A B C a b c
Q R S q r s

2/3 A B C a b c
Q R S q r s

1 A B C a b c
Q R S q r s

Figure 1: CMSS series

tions produce good quality approximations, it is not
so with the data extracted from Computer Modern
METAFONT files. The plots of the parameters, with
respect to the design size, are “noisy” functions
with some abrupt jumps since these parameters
were selected manually to optimize the font shape,
not the mathematical plots. As a result the cubic
smooth approximations obey parasitic local minima
and maxima and do not work far outside the range
of design sizes used as the base data points. The dc

and tc fonts with intermediate font sizes are visually
good even with these “mathematical” defects, but
for some specific reasons these defects could work
badly when implemented in mff.sty.

The first version of mff.sty was based on pie-
cewise-linear and piecewise-cubic (Lagrange splines)
functions using Computer Modern typefaces as the
reference data. To eliminate the parasitic local
minima and maxima, some data points were slightly
changed, and new data points were added to guar-
antee a good behavour of the approximating expres-
sions outside the range 5pt– 17.28pt. The current
version of mff.sty is based on the sauter-type ap-
proximation with some modifications (especially for
cmff and cmfib fonts).2 As an option the piecewise-
linear and the piecewise-cubic approximations based
on dc data could be be included in futher versions of
mff.sty while the variated Computer Modern data
used in the intermediate versions becames more-or-
less obsolete.

2 The reason to use sauter was the following: it is not a
good idea to modify voluntary the original Computer Modern
parameters.

116 TUGboat, 17, Number 2 — Proceedings of the 1996 Annual Meeting



Computer Modern Typefaces as the Multiple Master Fonts

0 A B C a b c
Q R S q r s

1/3 A B C a b c
Q R S q r s

2/3 A B C a b c
Q R S q r s

1 A B C a b c
Q R S q r s

Figure 2: CMTT series

Mixture of independent fonts

The Computer Modern fonts roman, bold, slanted,
sans serif, typewriter, funny, dunhill, and quota-

tion use the same METAFONT programs but with
different values for font parameters. For each font
series it is possible to construct the smooth ap-
proximations (similar to CMR font approximation
mentioned in the previous section) which enables
creation of a METAFONT header file with arbitrary
design size.

Suppose that there are such smooth approxima-
tions, and it is possible to calculate for some fixed
design size the parameters of legal CMR, CMBX,
CMTT and CMSS fonts. All these fonts are gener-
ated by METAFONT without errors, and it can be
supposed that the weighted sum of the parameters
corresponding to these fonts also can be processed
by METAFONT without error messages — at least we
can expect it with good probability.

The CMTT fonts have nearly rectangular serifs,
nearly no contrast between thin and thick lines, and
are a little compressed in the vertical direction. The
CMSS fonts have no serifs at all, their width is
less than that of CMR fonts, and, although they
also have no contrast, the thickness of their lines is
greater as compared with CMTT. Other fonts have
their own specific features, but in spite of this fact
they can be “added” together — at least mathemat-
ically. The resulting font is no longer CMR, CMBX,
CMTT, etc., but is something intermediate with a
unique shape.

The CMBX fonts can be subdivided (to some
extend artificially) into two independent font se-

I A B C I J K
a b c i j k

II A B C I J K
a b c i j k

III A B C I J K
a b c i j k

Figure 3: Font Modifications

ries — one for “boldness” (i.e., weight) and one
for “extension” (i.e., width). It makes the total
scheme more closely related to the NFSS realized in
LATEX2ε. So in mff.sty the CMBX font sequence is
decomposed into CMB′ (fonts which are as bold as
CMBX and as wide as CMR, but which are different
from the standard CMB10 font) and CMX (fonts
which are as wide as CMBX and as bold as CMR).

The mixture of fonts is performed by the com-
mand \MFFcompose{α1}{α2}. . .{α6} where α1 –α6

are some numerical values. The value α1 corre-
sponds to CMB, α2 to CMX, α3 to CMSS (sans serif
font), α4 to CMTT (typewriter font), α5 to CMFIB
(“Fibonacci” font), and α6 to CMFF (funny font).
If some parameter has the numerical value pcmr for
CMR font, pcmb for CMB font with the same design
size, etc., the mixture value is calculated as

p∗ = pcmr + α1 (pcmb − pcmr) + α2 (pcmx − pcmr)
+α3 (pcmss − pcmr) + α4 (pcmtt − pcmr)
+α5 (pcmfib − pcmr) + α6 (pcmff − pcmr)

It enables one, for example, to make the font
“less bold” than CMR or “more bold” and “more
extended” than CMBX by assignment of values
which are less than 0 or greater than 1, and to create
the “mutant” combinations of nearly incompatible
font families. In Fig. 1 the result of a mixture of
cmr10 and cmss10 is shown, and in Fig. 2 a similar
series is constructed for cmr10 and cmtt10.

Manual font modification

In addition to the weighted mixture of font ingre-
dients it is possible to vary some font parameters
which are responsible for the specific effects.

The inclination of the characters depends on the
single font parameter slant#, and its value can be
set explicitly as a ratio ∆y/∆x or as the inclination
angle (specified in degrees).

The width of the CMR font can be varied by
mixing with the CMX font, but it also can be

TUGboat, 17, Number 2 — Proceedings of the 1996 Annual Meeting 117



A.S. Berdnikov and O.A. Grineva

scaled explicitly by some factor specified by the user.
Although this scaling skips some fine tuning of the
font parameters, it can be advantageous to use it
in some situations. For example, if we deal with
CMTT fonts or CMSS fonts, mixing with CMX
results also in some variation of the character shapes
which can have an undesirable effect.

Similarly, the weight, i.e., the “boldness” of the
characters, which can be controlled by mixing with
CMB, can be defined also as a direct scaling of the
font parameters which are responsible for this effect.
The weight of “thin lines” and “thick lines” can
be scaled independently, and in addition the user
can specify explicitly the contrast — i.e., the ratio
between thick and thin strokes of the characters.

The height of the vertical elements of the char-
acters can be varied by the user with greater flexi-
bility. That is, it is possible to scale independently

• the general height and the depth of the charac-
ters;

• the height of the capital characters, brackets,
digits, etc., and the ascenders of the characters
like ‘b’, ‘t’;

• the depth of commas and the ascenders of the
characters like ‘Q’, ‘y’;

• the height of digits and the position of the
horizontal bar for mathematical signs like +,
−.

If several height factors are specified, their effect is
combined. For example, the font cmdunh10 can be
derived exactly from cmr10 by proper specification
of all these factors.

Finally, the special scaling factors can be used
to produce the special effects:

• scale the fine connection between thin and thick
lines in ‘h’, ‘m’, ‘n’;

• scale the thickness of sharp corners in letters
‘A’, ‘V’, ‘w’;

• scale the diameters of dots in ‘i’, ‘:’ and bulbs
in ‘a’, ‘c’;

• scale the curvature of the serif footnotes.

and the logical flags can control the level of ligatures
and to switch on/off square dots, sans serif mode,
monospace mode, etc.

Fig. 3 demonstrates the examples of such mod-
ifications:

• font (I) is the standard cmr10 scaled at 1.8
times,

• font (II) differs from cmr10 by scaling the width
by 0.8, the height by 1.2 and the width of bold
lines by 1.5;

• font (III) differs from cmr10 by scaling the
width by 1.2, the height by 0.8, the ascenders
and descenders by 1.25, the width of bold lines
by 0.8 and the width of thin lines by 2.4.

All the commands which allow performance of these
modifications are described in mff.sty manual in
details.

Automatic check of font parameters

Each specification of mff.sty parameters produces
a unique font which belongs to the CMR/MF (Com-
puter Modern Roman Master Font) font family and
with a unique name specified by the user. Not all of
these fonts are too pleasant, and not each variation
of the parameters result to a font which is well-
distinguished from the others. But at least it is an
interesting toy for font maniacs.

There is a list of mutual relations between font
parameters which are assumed implicitly in META-
FONT programs for Computer Modern typefaces [1].
Although in reality most METAFONT source files
violate these conditions, it is safer if the font pa-
rameters calculated by mff.sty satisfy them. The
command \MFFcheck sets the mode when these
conditions are checked and the variable values are
corrected if necessary. Nethertheless, several inter-
esting effects can be achieved only without such au-
tomatic correction. The mode of automatic checking
can be switched off by the command \MFFcheck.

Switch to other font classes

The LATEX2ε NFSS classifies TEX font families in a
way which is different from the logical structure of
METAFONT programs. That is, the italic and small

caps are at the same family roman, together with
bold and slanted fonts, although they are pro-
duced by a different driver files. Similarly, roman,
typewriter and sans serif fonts are different families
while they are generated by the same METAFONT
script and their parameters can be varied so that
one family is smoothly converted to another family.

In mff.sty, there is no sharp boundary be-
tween roman, bold, slanted, typewriter, sans
serif, quotation, funny and dunhill fonts — each font
is smoothly converted to another one, while italic
and small caps fonts are quite different. The
mff.sty macros assign different classes to these
fonts to distinguish such differences from the font
families used in NFSS. The following font classes
can be used:

CMR Computer Modern Roman;

CMTI Computer Modern Text Italic;

CMCSC Computer Modern Small Caps;

118 TUGboat, 17, Number 2 — Proceedings of the 1996 Annual Meeting



Computer Modern Typefaces as the Multiple Master Fonts

CMRZ CMZ Computer Modern Roman/Cyrillic
by N. Glonti and A. Samarin;

CMRIZ CMZ Computer Modern Text Italic/Cy-
rillic;

CMCCSC CMZ Computer Modern Small Caps/
Cyrillic;

LHR LH Computer Modern Roman/Cyrillic by
O. Lapko and A. Khodulev;

LHTI LH Computer Modern Text Italic/Cyrillic;

LHCSC LH Computer Modern Small Caps/Cyril-
lic.

The interface for DC fonts [3] is under development.

The set of font classes can be extended easily
when the METAFONT program is based on the same
set of parameters as Computer Modern fonts: The
only thing to do is to specify the macro which
writes the font identifier value and the operator
generate with the corresponding file name.

Acknowledgements

The authors would like to express their warmest
thanks to Kees van der Laan for organization and
realization of the Euro-Bus project which enabled
the Russian delegation to take part in EuroTEX-95,
and to Ph.Taylor for his activity in breaking down
the barriers between West and East.

This research was partially supported by a
grant from the Dutch Organization for Scientific
Research (NWO grant No 07-30-007).

References

[1] Donald E. Knuth. Computer Modern Type-
faces, (Computers & Typesetting series). Ad-
dison-Wesley, 1986.

[2] John Sauter. Building Computer Modern fonts.
TUGboat, 7 (1986), pp. 151 – 152.

[3] Jörg Knappen. The release 1.2 of the Cork en-
coded DC fonts and the text companion symbol
fonts. Proceedings of the 9th EuroTEX Confer-
ence, Arnhem, 1995.

[4] A. Khodulev and I. Mahovaya. On TEX experi-
ence in MIR Publishers. Proceedings of the 7th
EuroTEX Conference, Prague, 1992.

[5] O. Lapko. MAKEFONT as a part of CyrTUG –
EmTEX package. Proceedings of the 8th Eu-
roTEX Conference, Gdańsk, 1994.

TUGboat, 17, Number 2 — Proceedings of the 1996 Annual Meeting 119


