
OpenType and Ω: Past, Present and Future

Yannis Haralambous
Département Informatique
École Nationale Supérieure des Télécommunications de Bretagne
CS 83818, 29238 Brest Cédex, France
yannis.haralambous@enst-bretagne.fr

Gábor Bella
gabor.bella@enst-bretagne.fr

Abstract

This article presents our plans for integrating the OpenType font format into the
Ω typesetting system. Beginning with a short summary of what we have achieved
so far, we compare potential methods of adaptation. Since most OpenType-
related issues we present are valid not only for Ω but for all TEX-like systems, the
authors hope that the article will be interesting for the whole TEX community.

1 Past

The OpenType font format has been officially avail-
able since 1997. In contrast to its predecessors,
TrueType and PostScript Type 1 and 2, it provides
essential features for proper typesetting of non-LGC1

scripts, as well as handling LGC ones. Although
competing formats with similar capabilities (Apple
GX/AAT and Graphite) were and still are available,
the marketing force behind OpenType seems strong
enough to make it a de facto standard.

The decision to bring OpenType support to Ω
as a complement to the already available fonts was
taken sometime in 2002 and effective work began
around early 2003. At the EuroTEX 2003 confer-
ence, we presented our initial development plans
and our first results [1]. Since then, considerable
progress has been made, so that in the final version
of the EuroTEX proceedings we are finally able to
announce a working implementation [1].

However, this implementation is not likely to
become the final solution, for two reasons. First,
it was never intended to be such. Rather, it was
created to verify the validity of certain conversion
methods and also to provide users with the possibil-
ity to install and use OpenType fonts as quickly as
possible, even if not all advanced features are avail-
able yet. Secondly, as we will see later, complete and
robust OpenType support cannot simply be patched
onto the existing Ω: as the two do not always share
the same philosophy, some parts of Ω will need to

1 Latin-Greek-Cyrillic.

be reorganized in order to take advantage of certain
OpenType features.

In the following, we give a quick overview of
the present solution and then explain why and how
it needs to be revised.

2 Present: OpenType Support, the Quick
Way

The word ‘quick’ may seem ironic here: in total,
it took us almost a year to produce our first re-
sults. However, this was due more to organizational
problems than to the difficulty of the task. By ‘the
quick way’, we mean the solution that was the most
straightforward and the easiest to implement. It is
described in detail in the EuroTEX article [1]; here,
only a short summary is given.

The present solution is based on the approach
that OpenType fonts should be converted to Ω’s own
formats, i.e., OFM (metrics), OVF (virtual fonts)
and ΩTP (Ω Translation Process2). Anish Mehta
wrote several Python scripts to generate these files,
of which the most interesting is perhaps the one that
converts the whole OpenType GSUB table (see next
section) into ΩTP’s.

Moreover, as the OpenType format is generally
not understood by PostScript printers, a conversion
to Type 1 (or Type 42) is necessary. To speed up
the process, we create Type 1 charstring collections
using our own PFC tables (see [1] for details) which

2 An ΩTP describes a finite state automaton that can be
used to filter the input text to perform tasks such as contex-
tual analysis.

Preprints for the 2004 Annual Meeting 65



Yannis Haralambous and Gábor Bella

are later used by odvips to create small, subsetted
Type 1 fonts (a.k.a. minifonts) on the fly.

The above approach assumes that OpenType
can be converted to OFM and ΩTP files without sig-
nificant loss of information. This is not always the
case. In the next section, we will show the main dif-
ferences between the two formats and why we have
decided to abandon some of our results in favour
of a better concept. This does not mean that the
work done so far was useless: first, we managed to
prove that the conversion to Type 1 (which we are
planning to keep) is a viable approach and secondly,
we are able to provide Ω users with a working, al-
beit not complete and only temporary, OpenType
support.

3 Future: Alternatives of Adaptation

An OpenType font consists mainly of the following
parts:

1. font and glyph metrics;
2. Type 2 or TrueType glyph outlines (and hints

or instructions);
3. advanced typographic features (mainly GSUB

and GPOS);
4. other data tables.

In one form or another, all of them will certainly
need to be dealt with either inside Ω or odvips. Be-
low, we give a very concise description of our plans
regarding each of these fields.

3.1 Metrics

OpenType provides extensive font metric informa-
tion dispersed among various tables (post, kern,
hmtx, hdmx, OS/2, VORG, etc.), both for horizon-
tal and vertical typesetting. In most cases, Ω’s (or
TEX’s) and OpenType’s metrics can be converted
from one to another, with few but important excep-
tions (e.g., height/depth, see [1] and [2]). Despite
the occasional differences, it seems desirable to dis-
pose of the intermediary OFM files and read Open-
Type metrics directly from the font file.

3.2 Conversion

As explained in the last section, conversion of Open-
Type’s Type 2 and TrueType outlines to Type 1 has
already been implemented. We are also planning
to provide Type 42 support for TrueType-flavoured
OpenType that would also preserve instructions.

3.3 Advanced features: GSUB and GPOS

These advanced features are the most interesting
part of OpenType. The GSUB (glyph substitution)
and GPOS (glyph positioning) tables are essential

for typesetting many non-LGC scripts. In Ω, the
equivalent of GSUB features are the ΩTP’s: they can
do everything GSUB features can, including contex-
tual operations. Glyph positioning is a different is-
sue: since the ΩTPs are designed for text rearrange-
ment (substitutions, reordering etc.), they are not
suitable for doing glyph placement as easily. In fact,
the idea of microengines—ΩTP-like Ω plugins—was
introduced some time ago, exactly to provide mod-
ular, script- and language-specific positioning meth-
ods, along the lines of ΩTP files. With the appear-
ance of OpenType fonts, it became clear that posi-
tioning features as implemented by the GPOS table
and microengines provide essentially the same func-
tionality. It should then be possible to implement
microengines as GPOS features and vice versa.

A closely related problem is the fundamental
difference between Ω’s and OpenType’s way of de-
scribing features. Although both use the Unicode
encoding, OpenType’s GSUB and GPOS features are
based on strings of glyph ID’s and not of Unicode
characters. Ω and some of its ΩTP’s, on the other
hand, perform tasks such as contextual analysis or
hyphenation on character sequences and the passage
from characters to ‘real’ glyph ID’s happens only
when (o)dvips replaces virtual fonts by real ones.
Moreover, it is theoretically impossible to convert
a glyph-based OpenType feature into a character-
based ΩTP, as some glyphs (allographs) may not
even have Unicode equivalents.3 The solution to this
problem is either to use glyph- and character-based
ΩTP’s at the same time or else to read GSUB and
GPOS features directly from the OpenType font,
without conversion to ΩTP’s or microengines.

Whichever method we choose, Ω will need to
maintain both glyph and character representations
of the same text in parallel to be able to perform
font-specific (OpenType features) and font-indepen
dent (hyphenation) operations at the same time.
This dual representation of text is also crucial for the
searchability and modifiability of the output (PDF,
PS, SVG or any other) document.

3.4 Extensibility

Finally, the OpenType format has the important
feature of being extensible: new tables can be added
into the font file, containing, for example, data need-
ed by Ω with no OpenType-equivalents (such as
metrics or PFC charstrings). Of course, it is nec-
essary that the given font’s license allows such ad-
ditions.

3 There exist some workarounds though, for example to
map these glyphs to the Private User Area of Unicode, but
this solution is not very elegant, to say the least.

66 Preprints for the 2004 Annual Meeting



OpenType and Ω: Past, Present and Future

4 Conclusions

It is time to draw conclusions from the arguments
made above. First, OpenType seems capable of be-
ing a base font format for Ω. Its tabular file struc-
ture is flexible enough so that missing Ω-specific in-
formation can easily be added to fonts. Metrics can
be read directly from the font file (with some excep-
tions) and then converted on the fly, if necessary.
Also, virtual fonts are not useful for OpenType, as
it is more reasonable to use a Unicode-based en-
coding. Thus, neither OFM nor OVF files will be
needed when using OpenType fonts. This is one of
the arguments against the approach presented in the
previous section.

Secondly, in terms of capabilities, ΩTP’s and
GSUB features are very much compatible. The same
can be said for GPOS and microengines, although
no implementation exists for the latter yet. How-
ever, incompatibility is present on the character/
glyph level. As was shown, a dual approach can be
helpful, keeping strings of glyph ID’s and characters
in parallel—another reason why the simple conver-
sion method described in the previous section is not
adequate.

In summary, on the one hand we have opted
for a tighter integration of Ω and OpenType, by di-
rectly reading from (e.g., metrics) and writing to the
font file. On the other hand, advanced OpenType
features such as glyph positioning and substitution
necessitate modifications in Ω’s character handling
as well as in the ΩTP/microengine concept. The
companion article in this volume will give further
details on how we are planning to implement these
changes.

References

[1] Gábor Bella and Anish Mehta: Adapting Ω to
OpenType Fonts. EuroTEX 2003 Proceedings.
Final version to appear in TUGboat.

[2] Yannis Haralambous and John Plaice: Ω and
OpenType Fonts. Kyōto University 21st Cen-
tury COE Program, 2003.

[3] The OpenType Specification v1.4.
http://www.microsoft.com/typography
/otspec/default.htm

Preprints for the 2004 Annual Meeting 67


