
324 TUGboat, Volume 29 (2008), No. 2

Glisterings

Peter Wilson

The raging waves doth belching upwardcast
The wretched wrackes that round about doe
fleete,
The silken sayles and glistering golden
Mast,
Lies all to torne and trodden under feete.

The Ship of safegarde, Barnabe Googe

The aim of this column is to provide odd hints or
small pieces of code that might help in solving a
problem or two while hopefully not making things
worse through any errors of mine.

Corrections, suggestions, and contributions will
always be welcome.

The main topic this time is macro definition.
Questions about this, particularly with respect to
LATEX, are fairly regular on the comp.text.tex news-
group. But first. . .

The lines are fallen unto me in pleasant
places; yea I have a goodly heritage.

Psalm 16, verse 6

1 More on paragraphs

Donald Knuth sent me a version of the following
code saying

‘I’ve found this macro to be useful for check-
ing out a \parshape specification before clut-
tering it up with actual text.’

% parshape.tex, featuring a possibly useful

% macro by Don Knuth, April 2007

% \parshapetest{n} will typeset n lines of

% horizontal rules using the current

% paragraph shape (as specified by

% \hangindent, \hangafter, \parshape, or

% none of the above)

\def\parshapetest#1{%

\leavevmode%% DEK originally had \indent here

\count255=1 \loop

\ifnum\count255<#1

\null\leaders\hrule\hfil\null\break

\advance\count255 by 1 \repeat

\null\leaders\hrule\hfil\hskip-\parfillskip

\null\par}

Unfortunately it was too late to incorporate it into
the last column [8] which was about how to typeset
variously shaped paragraphs. It was doubly unfor-
tunate because when I tried using \parshapetest
on some of the examples I found that I had misun-
derstood some aspects of paragraph setting.

\parshapetest{〈num〉} draws 〈num〉 lines ac-
cording to the current paragraph shape specifica-
tion, which doesn’t sound very exciting but can save
a lot of fiddling trying to get the right number of
words for a more realistic trial layout.

For instance, I tried this example from [8]
\begingroup

\hangindent=3pc \hangafter=-2

\parshapetest{4}

\endgroup

which, to my surprise, resulted in:

What I hadn’t realised was that even with spec-
ifying \hangindent and \hangafter, \parindent
was applied to the first line of the shaped paragraph.
The effect that I had expected is obtained as below.
\begingroup

\parindent=0pt

\hangindent=3pc \hangafter=-2

\parshapetest{4}

\endgroup

which results in:

Following this I tried the \hangfrom example
from the same column which demonstrated a hang-
ing paragraph. The macro was defined as:
\newcommand*{\hangfrom}[1]{%

\setbox\@tempboxa\hbox{{#1}}%

\hangindent \wd\@tempboxa

\noindent\box\@tempboxa}

And a demonstration is:
\hangfrom{\Rightarrow\space}

\parshapetest{3}

⇒

Here’s a more interesting paragraph shape, and
the result of testing it:
\newdimen\zide

\zide=\baselineskip

\newcommand*{\aparshape}{%

\parshape=10 0pt 10\zide % 1

0pt 10\zide % 2

9\zide \zide % 3

8\zide \zide % 4

6\zide \zide % 5

4\zide \zide % 6

2\zide \zide % 7

TUGboat, Volume 29 (2008), No. 2 325

\zide \zide % 8

0pt 10\zide % 9

0pt 10\zide % 10

}

\aparshape

\noindent\parshapetest{10}

Try using this paragraph shape with a text of
76 ‘z’ characters with spaces between each, like this:
\aparshape
\noindent
z z z z z z z z z z z z z z z z z z
etc

Replying to a request on the comp.text.tex
newsgroup by Stephen Moye, Paul Vojta [7] posted
the following code1 for setting the first line of a para-
graph flushleft, the next centered and the final line
flushright.
\newcommand*{\leftcenterright}{%

\leftskip=0pt plus 1fil

\rightskip=0pt plus 1fil

\parfillskip=0pt plus -1fil

\parindent=0pt

\everypar={\hskip0pt plus -1fil}}

This should either be used in a group, or you can
use the following macro to return to the regular
paragraph style, where you have previously specified
\myparindent as the normal value of \parindent.
\newcommand*{\regularpar}{%

\leftskip=0pt plus 0pt minus 0pt

\rightskip=\leftskip

\parfillskip=0pt plus 1fil

\parindent=\myparindent

\everypar{}}

Following is an example of a \leftcenterright
paragraph, typeset from:
\leftcenterright

First line \\ Second line \break

Third line \break Last line \par

\regularpar

First line
Second line
Third line

Last line
1 For convenience I have put Paul’s code into a macro.

Who will change old lamps for new? . . . new
lamps for old ones?

Arabian Nights: The History of Aladdin

2 LATEX’s defining triumvirate

The macro provided by LATEX for defining new com-
mands is somewhat simpler than the TEX macro
upon which it is based. This is the LATEX one:
\newcommand{〈cmd〉}[〈num〉][〈arg1 〉]{〈defn〉}
where 〈cmd〉 is the name, including the backslash
(e.g., \amacro), of the new macro being defined and
〈defn〉 is the definition of the new macro, which may
be simply some text to be typeset or something very
complex. The optional 〈num〉 argument specifies the
number of arguments that the new macro will take;
if given this must be at least one and at most nine.
The new macro will take an optional argument if
〈arg1 〉 is given, where 〈arg1 〉 is the default value
of the first argument. The macro resulting from
\newcommand is, in TEX terms, a long macro, mean-
ing that an argument may consist of more than one
paragraph or, equivalently, include a \par. There
is also a star form of the command (\newcommand*)
which creates a macro where paragraph(s) are not
allowed in an argument to the new macro. If 〈cmd〉
has been defined previously LATEX will give an error
message.

The LATEX macro
\renewcommand{〈cmd〉}[〈num〉][〈arg1 〉]{〈defn〉}
and its companion \renewcommand*, are similar to
\newcommand except that they change the definition
of 〈cmd〉, which must have been defined earlier, oth-
erwise LATEX will complain.

The third member of LATEX’s macro definition
macros is:
\providecommand{〈cmd〉}[〈num〉][〈arg1 〉]{〈defn〉}
which acts like \newcommand if 〈cmd〉 has not been
defined, otherwise it silently does nothing. Again,
there is a starred version of the command.

If you want to make sure that your definition
for 〈cmd〉 is used regardless of whether or not it has
been defined before you can do this:
% ensure \amacro is defined

\providecommand{\amacro}{}

% change the definition

\renewcommand{\amacro}...

Within the 〈defn〉 argument to the macros the
use of the first argument, if any, is denoted by #1,
the second by #2, and so on up to the ninth which is
denoted by #9. The arguments can be used as many
times as needed and in any order.

A question that pops up now and then on the
comp.text.tex newsgroup is how to define a macro
that takes more than nine arguments. The answer is

326 TUGboat, Volume 29 (2008), No. 2

to split it up into two or more macros each of which
handles a portion of the required number. For, say,
11 arguments:
\newcommand{\xiargs}[9]{%

% 9 args used here then

\xtrargs}

\newcommand{\xtrargs}[2]{%

% use last 2 args here

% #1 and #2 are the apparent 10th & 11th args

}

The user calls \xiargs with the 11 arguments, and
\xiargs processes the first 9 of these. It then calls
\xtrargs, which is effectively hidden from view, to
process the remaining 2 arguments. If you need to
use, say, the 4th argument within \xtrargs this can
be easily accomplished:
\newcommand{\xiargs}[9]{%

% 9 args used here then

\xtrargs{#4}}

\newcommand{\xtrargs}[3]{%

% #1 here is #4 from \xiargs and

% #2 and #3 are the apparent 10th & 11th args

}

As a lead in to the next section, here is another
way of getting the 4th argument into \xtrargs:
\newcommand{\xiargs}[9]{%

% 9 args used here including

\def\ivarg{#4}%

% then

\xtrargs}

\newcommand{\xtrargs}[2]{%

% #1 and #2 are the apparent 10th & 11th args

% call \ivarg for original 4th arg

}

where \def is the TEX command for defining a com-
mand.

This kind of code can obviously be extended to
handle as many arguments as you wish, but after a
while it might be easier to use the keyval package [3],
or the later extension called xkeyval [2], which pro-
vide a very different approach. You name each ar-
gument and the user can use as many or as few of
these as he deems necessary.

He who can properly define and divide is to
be considered a god.

Novum Organum, Francis
Bacon quoting Plato

3 TEX’s dictator

TEX has an all-purpose command for defining new
macros, namely \def. There are too many aspects
to this to cover them all in a short article; Knuth [5,
ch. 20] provides the definitive explanation, but you

may find that Eijkhout [4, ch. 11] or Abrahams et
al. [1, chs. 4 and 9] are more accessible or helpful.

The syntax of the \def command is unlike any-
thing you see in an author’s view of LATEX.
\def〈cmd〉〈paramspec〉{〈defn〉}
As in the LATEX formulation, 〈cmd〉 is the name,
including the backslash (e.g., \amacro), of the new
macro being defined and 〈defn〉 is the definition of
the new macro, just as with LATEX. Note that there
are no braces around 〈cmd〉.

The 〈paramspec〉 is where you specify the ap-
pearance of any arguments to 〈cmd〉. Each argu-
ment is denoted by #1, #2, etc., in 〈paramspec〉;
these must be in numerical order, and spaces within
〈paramspec〉 are significant. Below are two equiva-
lent pieces of (LA)TEX code:
\newcommand*{\amacro}[2]{....} % LaTeX

\def\amacro#1#2{....} % TeX

... \amacro{foo}{bar} ... % (La)TeX

That finishes the simple bit, except to say that if you
need an argument to consist of one or more para-
graphs, by including a blank line or a \par, then
the macro must be long. Also TEX gives no warning
if you \def a macro that has already been defined —
it just throws the old definition away. Be careful of
this as it is not a good idea to inadvertently rede-
fine some vital macro that you did not know existed.
Anyway, here are two more equivalent pieces of code:
\renewcommand{\amacro}[2]{....} % LaTeX

\long\def\amacro#1#2{....} % TeX

... \amacro{A paragraph\par}{bar} ... % (La)TeX

When the 〈paramspec〉 consists only of param-
eters (the #1 etc.) they are said to be undelimited ;
simplistically these correspond to LATEX’s manda-
tory arguments. On the other hand, if any non-
parameter tokens (that is, anything except a #n or
the opening { of the {〈defn〉}) occur after a #n then
that parameter is said to be delimited. When the
new macro is called, the argument for a delimited
parameter does not end until TEX encounters the de-
limiting character(s). Internally, LATEX uses delim-
ited parameters to implement optional arguments.

Suppose we need a macro that looks like this:
\where{foo}(x,y)
where foo, x and y are the arguments to \where.
The LATEX commands described above can’t handle
this, but TEX can:
\def\where#1(#2,#3){#1 in #2 #3}

and calling
\textit{%
\where{A nightingale sang}(Berkely,Square)}
results in
A nightingale sang in Berkely Square

TUGboat, Volume 29 (2008), No. 2 327

Perhaps you need a command that comes in two
versions, as \newcommand does. The LATEX kernel in-
cludes a macro called \@ifnextchar, whose syntax
is like this:
\@ifnextchar〈char〉{〈yes〉}{〈no〉}
It looks to see if the next non-space character in the
input text is 〈char〉. If it is it executes the 〈yes〉
argument, otherwise it executes the 〈no〉 argument.
The kernel also provides the next command:
\@ifstar{〈yes〉}{〈no〉}
which looks to see if the next character is a * and
if it is it gobbles up the * and executes the 〈yes〉
argument, otherwise it executes the 〈no〉 argument.
It is defined as follows:
\long\def\@firstoftwo#1#2{#1}

\def\@ifstar#1{%

\@ifnextchar *{\@firstoftwo{#1}}}

Now you can define your own (un)starred com-
mand pair, like this:
\makeatletter % if not in a .cls or .sty file

\def\maybestar{%

\@ifstar{\@maybestarS}{\@maybestar}}

% handle starred version

\def\@maybestarS#1#2{Star (#1) and (#2).}

% handle plain version

\def\@maybestar#1#2{(#1) and (#2).}

\makeatother % if not in a .cls or .sty file

The end result is a macro with a starred and un-
starred version that takes two arguments. A pair of
example results are:
\maybestar*{1st}{2nd} → Star (1st) and (2nd).
\maybestar{1st}{2nd} → (1st) and (2nd).

If you would like to use another character, say
a ?, in place of the *, here’s a way of doing it.
\def\maybeQ{%

\@ifnextchar ?{\@maybeQ}{\@maybe}}

\def\@maybeQ#1#2#3{Query (#2) and (#3).}

\def\@maybe#1#2{(#1) and (#2).}

Unlike the starring code where \@ifstar got rid of
the * the \@maybeQ macro has to discard the ? which
is the first character it will see; TEX treats a single
character2 as an argument so \@maybeQ is defined
such that it throws away its first argument.

A pair of example results are:
\maybeQ?{1st}{2nd} → Query (1st) and (2nd).
\maybeQ{1st}{2nd} → (1st) and (2nd).

Maybe you would like a LATEX command that
takes two optional arguments and one required one.
Heiko Oberdiek has produced a comprehensive pack-
age for creating such macros [6] but as another TEX
example here is a simple method that might be use-
ful for the odd occasion. The result will be a LATEX

2 More precisely, a token, but now is not the time to get
into all that.

macro, \twoopt, that takes one required and two op-
tional arguments. The defaults for the two optional
arguments are to be ‘opt1’ and ‘opt2’, respectively
and unimaginatively.
\def\twoopt{%

\@ifnextchar [{\@twoopt}{\@twoopt[opt1]}}

\def\@twoopt[#1]{%

\@ifnextchar [%

{\@@twoopt{#1}}{\@@twoopt{#1}[opt2]}}

\def\@@twoopt#1[#2]#3{%

1 (#1) 2 (#2) 3 (#3)}

Don’t forget that this has to be defined when LATEX
thinks that @ is a letter. Trying this out we get:
\twoopt{no opts} → 1 (opt1) 2 (opt2) 3 (no opts)
\twoopt[foo]{one opt} → 1 (foo) 2 (opt2) 3 (one
opt)
\twoopt[bar][baz]{two opts} → 1 (bar) 2 (baz)
3 (two opts)

References

[1] Paul W. Abrahams, Karl Berry, and
Kathryn A. Hargreaves. TEX for the
Impatient. Addison-Wesley, 1990. Available on
CTAN in info/impatient.

[2] Hendri Adriaens. The xkeyval package,
2005. Available on CTAN in latex/macros/
contrib/xkeyval.

[3] David Carlisle. The keyval package, 1999.
Available on CTAN in latex/macros/
required/graphics.

[4] Victor Eijkhout. TEX by Topic, A TEXnician’s
Reference. Addison-Wesley, 1991. ISBN

0-201-56882-9. Available at http://www.
eijkhout.net/tbt/.

[5] Donald E. Knuth. The TEXbook.
Addison-Wesley, 1984. ISBN 0–201–13448–9.

[6] Heiko Oberdiek. The twoopt package:
Definitions with two optional arguments,
1999. Available on CTAN in latex/macros/
contrib/oberdiek.

[7] Paul Vojta. Re: New York Times headline
style. Post to comp.text.tex newsgroup,
10 July 2007.

[8] Peter Wilson. Glisterings. TUGboat,
28(2):229–232, 2007.

� Peter Wilson
18912 8th Ave. SW
Normandy Park, WA 98166
USA
herries dot press (at)

earthlink dot net

