
132 TUGboat, Volume 42 (2021), No. 2

Texmlbus, a build system to convert
documents to XML and other formats

Heinrich Stamerjohanns

Abstract

Here I present an automatic open source build system
that supports the conversion process of a collection
of documents written in LATEX or other TEX for-
mats. With Texmlbus [4], the TEX to XML BUild
System, documents can not only be converted to
PDF, but also to other output formats—such as
markup languages like HTML. In particular, con-
version to XML, HTML and MathML is supported
via LATEXML. Texmlbus can schedule jobs among
several workers (possibly on different hosts), extract
and analyze the outcome of the conversion process
of each document and store results in its own data-
base. Result documents as well as statistics about
the results of the build process can be easily retrieved
using a web browser.

1 Introduction

LATEX is the preferred document source for many sci-
entists and authors who publish results that include
mathematical formulas. In addition to print-oriented
formats (PDF), there is also a need to export such
documents into other formats, such as XML-based
documents that more easily support additional ser-
vices like search and navigation, as well as integrating
the document or parts of it in web pages.

Automatic conversion of such collections of TEX
documents can be a time-intensive task. The con-
version result needs to be checked for errors and
the visual appearance needs to be verified for each
document. A build system that collects the result
and status of conversions offers easily clickable links
to result documents and log files, and collects and

 4

Interactive usage via browser

- add and remove documents
- queue conversion jobs
- manages document files

SQL database

 - workqueue
 - statistics

Document files
(each article

in subdirectory)

Worker Containers

- handle conversion
- call latexml and latexmlpost or
 conversion commands

Build Manager

- operates on workqueue
- schedules make jobs
 on worker containers
- analyzes log files

manages entries
 in workqueue
 - state and priority

reads
workqueue

invokes make
stores analyzed

log data

 default:
 create result files

 and log files

reads log files

Figure 1: Components of Texmlbus

doi.org/10.47397/tb/42-2/tb131stamerjohanns-texmlbus

Heinrich Stamerjohanns

https://doi.org/10.47397/tb/42-2/tb131stamerjohanns-texmlbus

TUGboat, Volume 42 (2021), No. 2 133

show statistics can provide helpful support in order
to manage such conversion tasks. Texmlbus is such a
system; its main components are shown in Figure 1.

Using LATEXML [3] as the default conversion
processor, this system is based on the arXMLiv build
system [5, 6], which I had written as a member of
the arXMLiv group at Jacobs University Bremen.
It was used to convert large collections of scientific
publications of the Cornell e-Print archive arχiv to
XML and Content-MathML. That build system had
not only been useful for converting documents, but
also by generating statistics for conversion errors
and warnings; thus our group was able to generate
feedback to the LATEXML developers on where to
focus improvements.

While the conversion of arχiv documents is now
being done with CorTex [2] the original arXMLiv
build system has now become Texmlbus. Texmlbus
still uses LATEXML as the main conversion processor,
but can easily be extended to support other conver-
sion processors and formats as well. It still can be
used for conversions of thousands of documents, but
now development is focused in particular on

• easy installation on any platform
• simple (interactive) use of system
• possibility for targets other than XHTML

• using the same targets with different systems

To make the system more easily installable and
runnable on any platform, docker containers have
been chosen. To simplify usage, interactive compo-
nents have been added to the system. Documents
can now be added, queued and removed via a web
browser. It is also now possible to organize document
collections in self-defined sets. This makes it easier
to navigate through and work with many documents.

The new build system also supports targets
other than XHTML. With only a few lines of code, it
is possible to add additional targets such as specific
XML-dialects or other validators to the system.

Also, so-called stages have been added to the
system. A stage is defined as a combination of a
target (e.g., XHTML) and a specific docker image that
implements the conversion. It is therefore possible
to have several stages that generate the same target,
but with different versions (e.g., TEX Live 2020 and
TEX Live 2021).

2 System

In order to ease deployment on any platform, the
system runs inside several docker containers, which
share a common file system containing the docu-
ments. There is a docker container for the build
manager (the web server backend which hosts the
application), a container for a relational database,

MySQL DB Build Manager
PHP

LaTeXML
worker

LaTeXML
worker

LaTeXML
worker

docker-compose

Shared
Volume

Figure 2: Docker setup using docker-compose

Figure 3: Texmlbus document overview

which stores information about the documents and
result statistics, and one or more worker containers
that actually run the conversion. The workers also
run a minimal web server, so jobs can be invoked via
API requests over HTTP. An overview of the docker
setup is shown in Figure 2.

Documents can be either copied to the file sys-
tem and then scanned for import or uploaded as
zip files via a web browser. It is also possible to
directly import and update files from Overleaf via a
git-bridge.

Then, documents (or whole sets) can be added
to a work queue interactively. The build manager
operates on the work queue and schedules jobs on
distributed worker containers. It keeps an internal
list of available hosts (each container is a host) and
distributes conversion jobs among these hosts. The
conversion jobs on the worker containers are invoked
via an API request over HTTP. A worker container
typically runs a make process to invoke latexml and
latexmlpost for the conversion to XHTML.

After the conversion has finished on the worker
container, the build manager is notified and then
collects data by analyzing log files and stores the
result in the database. The results are then shown
in an overview.

The build manager can, for example, collect the
names of missing macros that are not yet supported

Texmlbus, a build system to convert documents to XML and other formats

134 TUGboat, Volume 42 (2021), No. 2

Figure 4: Texmlbus statistics page

by LATEXML or give an overview of files for which
the conversion failed.

The document overview (see Figure 3) lists doc-
uments in collections (sets) and shows the conversion
status for each stage. On that page the TEX source,
error logs for each stage, and the result documents
are reachable with one click. The backend can also
create cumulative statistics of the result log data and
creates lists such as top fatal errors or most missing
macros on-the-fly.

To convert TEX documents to XHTML, LATEXML

needs so-called binding-files (with the suffix .ltxml).
By using the list of missing macros one can easily
determine which macros need more support in order
to improve the conversion results.

It is also possible to easily extend the system
and create additional stages that convert to other
formats or use another TEX environment. As a stage
is defined as a combination of target and container,
one can easily create a container that uses a different
TEX Live distribution. Therefore one can easily com-
pare the results of different distributions and gather
statistics about conversion results (Figure 4).

Furthermore, the system is not limited to con-
versions to other formats. Last year, W. Duivesteijn
wrote about “How to cheat the page limit” [1] for con-
ference papers and identified typical TEX commands
that are used to circumvent page limits. With a few
lines of code I have created a pagelimit stage that
tries to find these typical commands in a document
and categorizes the document accordingly.

3 Conclusion

The Texmlbus build system allows for easily con-
verting LATEX documents to XHTML and MathML

or other destination formats, and gathers statistics
about the conversion results. Since binding files’ cov-
erage of LATEXML is still not complete, this system

helps to identify missing style file support for doc-
ument collections and therefore gives feedback on
where to focus development efforts.

Other converters can also be used for conver-
sions. Docker containers that provide such convert-
ers need to be extended to provide some additional
HTTP support so they can be invoked via an HTTP

API. It should be simpler to directly plug in such
containers, so additional stages can be added even
more easily.

4 Acknowledgements

I am grateful to Overleaf for its support of the
project.

Please email me with any problems or questions.

References

[1] W. Duivesteijn, S. Hess, X. Du. How to
cheat the page limit. WIREs Data Mining
and Knowledge Discovery 10, Feb. 2020.
10.1002/widm.1361

[2] D. Ginev. CorTeX: A general purpose processing
framework for corpora of scientific documents.
https://github.com/dginev/CorTeX

[3] B. Miller, D. Ginev. LaTeXML: A LATEX to XML
converter. https://dlmf.nist.gov/LaTeXML/

[4] H. Stamerjohanns. texmlbus: A build system to
convert documents to XML and other formats.
https://github.com/stamer/texmlbus

[5] H. Stamerjohanns, M. Kohlhase. Transforming
the arχiv to XML. In 9th International
Conference, AISC 2008 15th Symposium,
Calculemus 2008 7th International
Conference, MKM 2008 Birmingham,
UK, July 28–August 1, 2008, S. Autexier,
J. Campbell, et al., eds., Intelligent Computer
Mathematics, pp. 574–582. Springer Verlag,
2008.

[6] H. Stamerjohanns, M. Kohlhase, et al.
Transforming large collections of scientific
publications to XML. Mathematics in
Computer Science 3(3):299–307, 2010. https:
//kwarc.info/kohlhase/papers/mcs10.pdf

⋄ Heinrich Stamerjohanns
Oldenburg, Germany
heinrich.stamerjohanns (at)

gmail.com

https://github.com/stamer/

texmlbus

Heinrich Stamerjohanns

https://doi.org/10.1002/widm.1361
https://github.com/dginev/CorTeX
https://dlmf.nist.gov/LaTeXML/
https://github.com/stamer/texmlbus
https://kwarc.info/kohlhase/papers/mcs10.pdf
https://kwarc.info/kohlhase/papers/mcs10.pdf

	Introduction
	System
	Conclusion
	Acknowledgements

